yoloserv/modules/deepface-master/deepface/detectors/FaceDetector.py
2024-09-04 00:14:08 +00:00

150 lines
4.6 KiB
Python

from typing import Any, Union
from PIL import Image
import numpy as np
from deepface.detectors import (
OpenCvWrapper,
SsdWrapper,
DlibWrapper,
MtcnnWrapper,
RetinaFaceWrapper,
MediapipeWrapper,
YoloWrapper,
YunetWrapper,
FastMtcnnWrapper,
)
def build_model(detector_backend: str) -> Any:
"""
Build a face detector model
Args:
detector_backend (str): backend detector name
Returns:
built detector (Any)
"""
global face_detector_obj # singleton design pattern
backends = {
"opencv": OpenCvWrapper.build_model,
"ssd": SsdWrapper.build_model,
"dlib": DlibWrapper.build_model,
"mtcnn": MtcnnWrapper.build_model,
"retinaface": RetinaFaceWrapper.build_model,
"mediapipe": MediapipeWrapper.build_model,
"yolov8": YoloWrapper.build_model,
"yunet": YunetWrapper.build_model,
"fastmtcnn": FastMtcnnWrapper.build_model,
}
if not "face_detector_obj" in globals():
face_detector_obj = {}
built_models = list(face_detector_obj.keys())
if detector_backend not in built_models:
face_detector = backends.get(detector_backend)
if face_detector:
face_detector = face_detector()
face_detector_obj[detector_backend] = face_detector
else:
raise ValueError("invalid detector_backend passed - " + detector_backend)
return face_detector_obj[detector_backend]
def detect_face(
face_detector: Any, detector_backend: str, img: np.ndarray, align: bool = True
) -> tuple:
"""
Detect a single face from a given image
Args:
face_detector (Any): pre-built face detector object
detector_backend (str): detector name
img (np.ndarray): pre-loaded image
alig (bool): enable or disable alignment after detection
Returns
result (tuple): tuple of face (np.ndarray), face region (list)
, confidence score (float)
"""
obj = detect_faces(face_detector, detector_backend, img, align)
if len(obj) > 0:
face, region, confidence = obj[0] # discard multiple faces
# If no face is detected, set face to None,
# image region to full image, and confidence to 0.
else: # len(obj) == 0
face = None
region = [0, 0, img.shape[1], img.shape[0]]
confidence = 0
return face, region, confidence
def detect_faces(
face_detector: Any, detector_backend: str, img: np.ndarray, align: bool = True
) -> list:
"""
Detect face(s) from a given image
Args:
face_detector (Any): pre-built face detector object
detector_backend (str): detector name
img (np.ndarray): pre-loaded image
alig (bool): enable or disable alignment after detection
Returns
result (list): tuple of face (np.ndarray), face region (list)
, confidence score (float)
"""
backends = {
"opencv": OpenCvWrapper.detect_face,
"ssd": SsdWrapper.detect_face,
"dlib": DlibWrapper.detect_face,
"mtcnn": MtcnnWrapper.detect_face,
"retinaface": RetinaFaceWrapper.detect_face,
"mediapipe": MediapipeWrapper.detect_face,
"yolov8": YoloWrapper.detect_face,
"yunet": YunetWrapper.detect_face,
"fastmtcnn": FastMtcnnWrapper.detect_face,
}
detect_face_fn = backends.get(detector_backend)
if detect_face_fn: # pylint: disable=no-else-return
obj = detect_face_fn(face_detector, img, align)
# obj stores list of (detected_face, region, confidence)
return obj
else:
raise ValueError("invalid detector_backend passed - " + detector_backend)
def get_alignment_angle_arctan2(
left_eye: Union[list, tuple], right_eye: Union[list, tuple]
) -> float:
"""
Find the angle between eyes
Args:
left_eye: coordinates of left eye with respect to the you
right_eye: coordinates of right eye with respect to the you
Returns:
angle (float)
"""
return float(np.degrees(np.arctan2(right_eye[1] - left_eye[1], right_eye[0] - left_eye[0])))
def alignment_procedure(
img: np.ndarray, left_eye: Union[list, tuple], right_eye: Union[list, tuple]
) -> np.ndarray:
"""
Rotate given image until eyes are on a horizontal line
Args:
img (np.ndarray): pre-loaded image
left_eye: coordinates of left eye with respect to the you
right_eye: coordinates of right eye with respect to the you
Returns:
result (np.ndarray): aligned face
"""
angle = get_alignment_angle_arctan2(left_eye, right_eye)
img = Image.fromarray(img)
img = np.array(img.rotate(angle))
return img