66 lines
1.7 KiB
Python
66 lines
1.7 KiB
Python
import os
|
|
from typing import Any
|
|
|
|
import numpy as np
|
|
import cv2 as cv
|
|
import gdown
|
|
|
|
from deepface.commons import functions
|
|
from deepface.commons.logger import Logger
|
|
|
|
logger = Logger(module="basemodels.SFace")
|
|
|
|
# pylint: disable=line-too-long, too-few-public-methods
|
|
|
|
|
|
class _Layer:
|
|
input_shape = (None, 112, 112, 3)
|
|
output_shape = (None, 1, 128)
|
|
|
|
|
|
class SFaceModel:
|
|
def __init__(self, model_path):
|
|
|
|
try:
|
|
self.model = cv.FaceRecognizerSF.create(
|
|
model=model_path, config="", backend_id=0, target_id=0
|
|
)
|
|
except Exception as err:
|
|
raise ValueError(
|
|
"Exception while calling opencv.FaceRecognizerSF module."
|
|
+ "This is an optional dependency."
|
|
+ "You can install it as pip install opencv-contrib-python."
|
|
) from err
|
|
|
|
self.layers = [_Layer()]
|
|
|
|
def predict(self, image: np.ndarray) -> np.ndarray:
|
|
# Preprocess
|
|
input_blob = (image[0] * 255).astype(
|
|
np.uint8
|
|
) # revert the image to original format and preprocess using the model
|
|
|
|
# Forward
|
|
embeddings = self.model.feature(input_blob)
|
|
|
|
return embeddings
|
|
|
|
|
|
def load_model(
|
|
url="https://github.com/opencv/opencv_zoo/raw/main/models/face_recognition_sface/face_recognition_sface_2021dec.onnx",
|
|
) -> Any:
|
|
|
|
home = functions.get_deepface_home()
|
|
|
|
file_name = home + "/.deepface/weights/face_recognition_sface_2021dec.onnx"
|
|
|
|
if not os.path.isfile(file_name):
|
|
|
|
logger.info("sface weights will be downloaded...")
|
|
|
|
gdown.download(url, file_name, quiet=False)
|
|
|
|
model = SFaceModel(model_path=file_name)
|
|
|
|
return model
|