yoloserv/downloads/face_recognition-master/examples/face_recognition_svm.py
2023-05-23 23:54:12 -03:00

80 lines
2.5 KiB
Python

# Train multiple images per person
# Find and recognize faces in an image using a SVC with scikit-learn
"""
Structure:
<test_image>.jpg
<train_dir>/
<person_1>/
<person_1_face-1>.jpg
<person_1_face-2>.jpg
.
.
<person_1_face-n>.jpg
<person_2>/
<person_2_face-1>.jpg
<person_2_face-2>.jpg
.
.
<person_2_face-n>.jpg
.
.
<person_n>/
<person_n_face-1>.jpg
<person_n_face-2>.jpg
.
.
<person_n_face-n>.jpg
"""
import face_recognition
from sklearn import svm
import os
# Training the SVC classifier
# The training data would be all the face encodings from all the known images and the labels are their names
encodings = []
names = []
# Training directory
train_dir = os.listdir('/train_dir/')
# Loop through each person in the training directory
for person in train_dir:
pix = os.listdir("/train_dir/" + person)
# Loop through each training image for the current person
for person_img in pix:
# Get the face encodings for the face in each image file
face = face_recognition.load_image_file("/train_dir/" + person + "/" + person_img)
face_bounding_boxes = face_recognition.face_locations(face)
#If training image contains exactly one face
if len(face_bounding_boxes) == 1:
face_enc = face_recognition.face_encodings(face)[0]
# Add face encoding for current image with corresponding label (name) to the training data
encodings.append(face_enc)
names.append(person)
else:
print(person + "/" + person_img + " was skipped and can't be used for training")
# Create and train the SVC classifier
clf = svm.SVC(gamma='scale')
clf.fit(encodings,names)
# Load the test image with unknown faces into a numpy array
test_image = face_recognition.load_image_file('test_image.jpg')
# Find all the faces in the test image using the default HOG-based model
face_locations = face_recognition.face_locations(test_image)
no = len(face_locations)
print("Number of faces detected: ", no)
# Predict all the faces in the test image using the trained classifier
print("Found:")
for i in range(no):
test_image_enc = face_recognition.face_encodings(test_image)[i]
name = clf.predict([test_image_enc])
print(*name)