from __future__ import annotations import paravision.recognition.sdk import typing import numpy import paravision.recognition.types _Shape = typing.Tuple[int, ...] __all__ = [ "Metadata", "SDK" ] class Metadata(): def __init__(self) -> None: ... @property def embedding_size(self) -> int: """ The embedding size of the Recognition models being used. :type: int """ @embedding_size.setter def embedding_size(self, arg0: int) -> None: """ The embedding size of the Recognition models being used. """ @property def engine(self) -> str: """ The engine or accelerator of the Recognition SDK instance being used. :type: str """ @engine.setter def engine(self, arg0: str) -> None: """ The engine or accelerator of the Recognition SDK instance being used. """ @property def engine_version(self) -> str: """ The version of the engine or accelerator being used. :type: str """ @engine_version.setter def engine_version(self, arg0: str) -> None: """ The version of the engine or accelerator being used. """ @property def generation(self) -> int: """ The generation of the Recognition SDK. :type: int """ @generation.setter def generation(self, arg0: int) -> None: """ The generation of the Recognition SDK. """ @property def model(self) -> str: """ The name of the Recognition models. :type: str """ @model.setter def model(self, arg0: str) -> None: """ The name of the Recognition models. """ @property def model_version(self) -> str: """ The version of the Recognition models. :type: str """ @model_version.setter def model_version(self, arg0: str) -> None: """ The version of the Recognition models. """ @property def sdk_version(self) -> str: """ The version of the Recognition SDK. :type: str """ @sdk_version.setter def sdk_version(self, arg0: str) -> None: """ The version of the Recognition SDK. """ pass class SDK(): """ SDK() A sdk object contains an instance of the Paravision model and its associated resources. SDK objects are long-living and do not need to be re-instantiated between method calls. """ def __init__(self, models_dir: typing.Optional[str] = None, settings: typing.Optional[paravision.recognition.types.Settings] = None) -> None: """ Create a new SDK instance with settings as a struct """ @typing.overload def get_bounding_boxes(self, imgs: list[numpy.ndarray], image_source: paravision.recognition.types.ImageSource = ImageSource.UNKNOWN) -> paravision.recognition.types.InferenceResult: """ Detect bounding boxes of faces in the image, returning a list of Faces. """ @typing.overload def get_bounding_boxes(self, imgs: list[paravision.recognition.types.Image], detection_model: paravision.recognition.types.ImageSource = '') -> paravision.recognition.types.InferenceResult: """ Accepts a list of NumPy arrays (images). """ @typing.overload def get_embedding_from_prepared_image(self, prepared_image: numpy.ndarray) -> paravision.recognition.types.Embedding: """ Get the embedding for a prepared image. """ @typing.overload def get_embedding_from_prepared_image(self, prepared_image: paravision.recognition.types.Image) -> paravision.recognition.types.Embedding: """ Accepts one prepared image (numpy array). """ def get_embeddings(self, faces: list[paravision.recognition.types.Face]) -> None: """ Get the embeddings for faces. """ @typing.overload def get_embeddings_from_landmarks(self, image: numpy.ndarray, landmarks: list[paravision.recognition.types.Landmarks]) -> list[paravision.recognition.types.Embedding]: """ Get the embeddings for faces. """ @typing.overload def get_embeddings_from_landmarks(self, image: paravision.recognition.types.Image, landmarks: list[paravision.recognition.types.Landmarks]) -> list[paravision.recognition.types.Embedding]: """ Accepts a NumPy array (image) and a list of landmarks. """ @typing.overload def get_faces(self, imgs: list[numpy.ndarray], qualities: bool = False, landmarks: bool = False, embeddings: bool = False, image_source: paravision.recognition.types.ImageSource = ImageSource.UNKNOWN) -> paravision.recognition.types.InferenceResult: """ Detect faces in the image. """ @typing.overload def get_faces(self, imgs: list[paravision.recognition.types.Image], qualities: bool = False, landmarks: bool = False, embeddings: bool = False, image_source: paravision.recognition.types.ImageSource = ImageSource.UNKNOWN) -> paravision.recognition.types.InferenceResult: """ Includes bounding boxes, landmarks, and [optionally] image quality details. """ def get_landmarks(self, faces: list[paravision.recognition.types.Face]) -> None: """ Get the landmarks for faces. """ @typing.overload def get_landmarks_from_bounding_boxes(self, img: numpy.ndarray, bboxes: list[paravision.recognition.types.BoundingBox]) -> paravision.recognition.types.InferenceResult: """ Get the landmarks from a bounding box. """ @typing.overload def get_landmarks_from_bounding_boxes(self, img: paravision.recognition.types.Image, bboxes: list[paravision.recognition.types.BoundingBox]) -> paravision.recognition.types.InferenceResult: """ Accepts a NumPy array (image) and a list of bounding boxes. """ @staticmethod def get_match_score(emb1: paravision.recognition.types.Embedding, emb2: paravision.recognition.types.Embedding, scoring_mode: paravision.recognition.types.ScoringMode = ScoringMode.EnhancedEmbedding) -> int: """ Compute the difference score of two faces embeddings. A larger number indicates a greater similarity between the two embeddings; a lower number indicates a greater difference between the two embeddings. """ @staticmethod def get_metadata(models_dir: typing.Optional[str] = None) -> Metadata: """ Returns metadata for SDK and model info. """ def get_qualities(self, faces: list[paravision.recognition.types.Face]) -> None: """ Get the quality of the faces in the image. """ @staticmethod def get_similarity(emb1: paravision.recognition.types.Embedding, emb2: paravision.recognition.types.Embedding, scoring_mode: paravision.recognition.types.ScoringMode = ScoringMode.EnhancedEmbedding) -> float: """ Compute the difference score of two faces embeddings. A larger number indicates a greater similarity between the two embeddings; a lower number indicates a greater difference between the two embeddings. """ pass