more refactoring
This commit is contained in:
parent
827b103d2a
commit
8800acc978
@ -1,674 +0,0 @@
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users. We, the Free Software Foundation, use the
|
||||
GNU General Public License for most of our software; it applies also to
|
||||
any other work released this way by its authors. You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you have
|
||||
certain responsibilities if you distribute copies of the software, or if
|
||||
you modify it: responsibilities to respect the freedom of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the manufacturer
|
||||
can do so. This is fundamentally incompatible with the aim of
|
||||
protecting users' freedom to change the software. The systematic
|
||||
pattern of such abuse occurs in the area of products for individuals to
|
||||
use, which is precisely where it is most unacceptable. Therefore, we
|
||||
have designed this version of the GPL to prohibit the practice for those
|
||||
products. If such problems arise substantially in other domains, we
|
||||
stand ready to extend this provision to those domains in future versions
|
||||
of the GPL, as needed to protect the freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish to
|
||||
avoid the special danger that patents applied to a free program could
|
||||
make it effectively proprietary. To prevent this, the GPL assures that
|
||||
patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Use with the GNU Affero General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program does terminal interaction, make it output a short
|
||||
notice like this when it starts in an interactive mode:
|
||||
|
||||
<program> Copyright (C) <year> <name of author>
|
||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, your program's commands
|
||||
might be different; for a GUI interface, you would use an "about box".
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU GPL, see
|
||||
<http://www.gnu.org/licenses/>.
|
||||
|
||||
The GNU General Public License does not permit incorporating your program
|
||||
into proprietary programs. If your program is a subroutine library, you
|
||||
may consider it more useful to permit linking proprietary applications with
|
||||
the library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License. But first, please read
|
||||
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
||||
@ -1,154 +0,0 @@
|
||||
## What's New
|
||||
|
||||
**2021.11**: BlazeFace
|
||||
| Method | multi scale | Easy | Medium | Hard | Model Size(MB) | Link |
|
||||
| -------------------- | ----------- | ----- | ------ | ----- | -------------- | ----- |
|
||||
| BlazeFace | Ture | 88.5 | 85.5 | 73.1 | 0.472 | https://github.com/PaddlePaddle/PaddleDetection |
|
||||
| BlazeFace-FPN-SSH | Ture | 90.7 | 88.3 | 79.3 | 0.479 | https://github.com/PaddlePaddle/PaddleDetection |
|
||||
| yolov5-blazeface | True | 90.4 | 88.7 | 78.0 | 0.493 | https://pan.baidu.com/s/1RHp8wa615OuDVhsO-qrMpQ pwd:r3v3 |
|
||||
| yolov5-blazeface-fpn | True | 90.8 | 89.4 | 79.1 | 0.493 | - |
|
||||
|
||||
**2021.08**: Yolov5-face to TensorRT.
|
||||
Inference time on rtx2080ti.
|
||||
|Backbone|Pytorch |TensorRT_FP16 |
|
||||
|:---:|:----:|:----:|
|
||||
|yolov5n-0.5|11.9ms|2.9ms|
|
||||
|yolov5n-face|20.7ms|2.5ms|
|
||||
|yolov5s-face|25.2ms|3.0ms|
|
||||
|yolov5m-face|61.2ms|3.0ms|
|
||||
|yolov5l-face|109.6ms|3.6ms|
|
||||
> Note: (1) Model inference (2) Resolution 640x640
|
||||
|
||||
|
||||
**2021.08**: Add new training dataset [Multi-Task-Facial](https://drive.google.com/file/d/1Pwd6ga06cDjeOX20RSC1KWiT888Q9IpM/view?usp=sharing),improve large face detection.
|
||||
| Method | Easy | Medium | Hard |
|
||||
| -------------------- | ----- | ------ | ----- |
|
||||
| ***YOLOv5s*** | 94.56 | 92.92 | 83.84 |
|
||||
| ***YOLOv5m*** | 95.46 | 93.87 | 85.54 |
|
||||
|
||||
|
||||
## Introduction
|
||||
|
||||
Yolov5-face is a real-time,high accuracy face detection.
|
||||
|
||||

|
||||
|
||||
## Performance
|
||||
|
||||
Single Scale Inference on VGA resolution(max side is equal to 640 and scale).
|
||||
|
||||
***Large family***
|
||||
|
||||
| Method | Backbone | Easy | Medium | Hard | \#Params(M) | \#Flops(G) |
|
||||
| :------------------ | -------------- | ----- | ------ | ----- | ----------- | ---------- |
|
||||
| DSFD (CVPR19) | ResNet152 | 94.29 | 91.47 | 71.39 | 120.06 | 259.55 |
|
||||
| RetinaFace (CVPR20) | ResNet50 | 94.92 | 91.90 | 64.17 | 29.50 | 37.59 |
|
||||
| HAMBox (CVPR20) | ResNet50 | 95.27 | 93.76 | 76.75 | 30.24 | 43.28 |
|
||||
| TinaFace (Arxiv20) | ResNet50 | 95.61 | 94.25 | 81.43 | 37.98 | 172.95 |
|
||||
| SCRFD-34GF(Arxiv21) | Bottleneck Res | 96.06 | 94.92 | 85.29 | 9.80 | 34.13 |
|
||||
| SCRFD-10GF(Arxiv21) | Basic Res | 95.16 | 93.87 | 83.05 | 3.86 | 9.98 |
|
||||
| - | - | - | - | - | - | - |
|
||||
| ***YOLOv5s*** | CSPNet | 94.67 | 92.75 | 83.03 | 7.075 | 5.751 |
|
||||
| **YOLOv5s6** | CSPNet | 95.48 | 93.66 | 82.8 | 12.386 | 6.280 |
|
||||
| ***YOLOv5m*** | CSPNet | 95.30 | 93.76 | 85.28 | 21.063 | 18.146 |
|
||||
| **YOLOv5m6** | CSPNet | 95.66 | 94.1 | 85.2 | 35.485 | 19.773 |
|
||||
| ***YOLOv5l*** | CSPNet | 95.78 | 94.30 | 86.13 | 46.627 | 41.607 |
|
||||
| ***YOLOv5l6*** | CSPNet | 96.38 | 94.90 | 85.88 | 76.674 | 45.279 |
|
||||
|
||||
|
||||
***Small family***
|
||||
|
||||
| Method | Backbone | Easy | Medium | Hard | \#Params(M) | \#Flops(G) |
|
||||
| -------------------- | --------------- | ----- | ------ | ----- | ----------- | ---------- |
|
||||
| RetinaFace (CVPR20 | MobileNet0.25 | 87.78 | 81.16 | 47.32 | 0.44 | 0.802 |
|
||||
| FaceBoxes (IJCB17) | | 76.17 | 57.17 | 24.18 | 1.01 | 0.275 |
|
||||
| SCRFD-0.5GF(Arxiv21) | Depth-wise Conv | 90.57 | 88.12 | 68.51 | 0.57 | 0.508 |
|
||||
| SCRFD-2.5GF(Arxiv21) | Basic Res | 93.78 | 92.16 | 77.87 | 0.67 | 2.53 |
|
||||
| - | - | - | - | - | - | - |
|
||||
| ***YOLOv5n*** | ShuffleNetv2 | 93.74 | 91.54 | 80.32 | 1.726 | 2.111 |
|
||||
| ***YOLOv5n-0.5*** | ShuffleNetv2 | 90.76 | 88.12 | 73.82 | 0.447 | 0.571 |
|
||||
|
||||
|
||||
|
||||
## Pretrained-Models
|
||||
|
||||
| Name | Easy | Medium | Hard | FLOPs(G) | Params(M) | Link |
|
||||
| ----------- | ----- | ------ | ----- | -------- | --------- | ------------------------------------------------------------ |
|
||||
| yolov5n-0.5 | 90.76 | 88.12 | 73.82 | 0.571 | 0.447 | Link: https://pan.baidu.com/s/1UgiKwzFq5NXI2y-Zui1kiA pwd: s5ow, https://drive.google.com/file/d/1XJ8w55Y9Po7Y5WP4X1Kg1a77ok2tL_KY/view?usp=sharing |
|
||||
| yolov5n | 93.61 | 91.52 | 80.53 | 2.111 | 1.726 | Link: https://pan.baidu.com/s/1xsYns6cyB84aPDgXB7sNDQ pwd: lw9j,https://drive.google.com/file/d/18oenL6tjFkdR1f5IgpYeQfDFqU4w3jEr/view?usp=sharing |
|
||||
| yolov5s | 94.33 | 92.61 | 83.15 | 5.751 | 7.075 | Link: https://pan.baidu.com/s/1fyzLxZYx7Ja1_PCIWRhxbw Link: eq0q,https://drive.google.com/file/d/1zxaHeLDyID9YU4-hqK7KNepXIwbTkRIO/view?usp=sharing |
|
||||
| yolov5m | 95.30 | 93.76 | 85.28 | 18.146 | 21.063 | Link: https://pan.baidu.com/s/1oePvd2K6R4-gT0g7EERmdQ pwd: jmtk, https://drive.google.com/file/d/1Sx-KEGXSxvPMS35JhzQKeRBiqC98VDDI |
|
||||
| yolov5l | 95.78 | 94.30 | 86.13 | 41.607 | 46.627 | Link: https://pan.baidu.com/s/11l4qSEgA2-c7e8lpRt8iFw pwd: 0mq7, https://drive.google.com/file/d/16F-3AjdQBn9p3nMhStUxfDNAE_1bOF_r |
|
||||
|
||||
## Data preparation
|
||||
|
||||
1. Download WIDERFace datasets.
|
||||
2. Download annotation files from [google drive](https://drive.google.com/file/d/1tU_IjyOwGQfGNUvZGwWWM4SwxKp2PUQ8/view?usp=sharing).
|
||||
|
||||
```shell
|
||||
python3 train2yolo.py
|
||||
python3 val2yolo.py
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Training
|
||||
|
||||
```shell
|
||||
CUDA_VISIBLE_DEVICES="0,1,2,3" python3 train.py --data data/widerface.yaml --cfg models/yolov5s.yaml --weights 'pretrained models'
|
||||
```
|
||||
|
||||
|
||||
|
||||
## WIDERFace Evaluation
|
||||
|
||||
```shell
|
||||
python3 test_widerface.py --weights 'your test model' --img-size 640
|
||||
|
||||
cd widerface_evaluate
|
||||
python3 evaluation.py
|
||||
```
|
||||
|
||||
#### Test
|
||||
|
||||

|
||||
|
||||
|
||||
#### Android demo
|
||||
|
||||
https://github.com/FeiGeChuanShu/ncnn_Android_face/tree/main/ncnn-android-yolov5_face
|
||||
|
||||
#### opencv dnn demo
|
||||
|
||||
https://github.com/hpc203/yolov5-face-landmarks-opencv-v2
|
||||
|
||||
#### References
|
||||
|
||||
https://github.com/ultralytics/yolov5
|
||||
|
||||
https://github.com/DayBreak-u/yolo-face-with-landmark
|
||||
|
||||
https://github.com/xialuxi/yolov5_face_landmark
|
||||
|
||||
https://github.com/biubug6/Pytorch_Retinaface
|
||||
|
||||
https://github.com/deepinsight/insightface
|
||||
|
||||
|
||||
#### Citation
|
||||
- If you think this work is useful for you, please cite
|
||||
|
||||
@article{YOLO5Face,
|
||||
title = {YOLO5Face: Why Reinventing a Face Detector},
|
||||
author = {Delong Qi and Weijun Tan and Qi Yao and Jingfeng Liu},
|
||||
booktitle = {ArXiv preprint ArXiv:2105.12931},
|
||||
year = {2021}
|
||||
}
|
||||
|
||||
#### Main Contributors
|
||||
https://github.com/derronqi
|
||||
|
||||
https://github.com/changhy666
|
||||
|
||||
https://github.com/bobo0810
|
||||
|
||||
@ -1,40 +0,0 @@
|
||||
## DISPENSION
|
||||
## INTOXIVISION PROJECT - YOLOV5-FACE
|
||||
## JANUARY 1, 2022
|
||||
## Lucas Wan (lucas.wan@dal.ca)
|
||||
|
||||
**TO RUN**
|
||||
|
||||
Ensure that all required packages are installed (see requirements.txt)
|
||||
|
||||
python3 detect_face.py --image "/image-location"
|
||||
|
||||
Can edit detect_face to update write location.
|
||||
|
||||
**INFO**
|
||||
|
||||
Uses pretrained model: yolov5m6_face. This model has the best recorded accuracy.
|
||||
|
||||
Landmarks output gives X Y coordinates of [Left Eye, Right Eye, Nose, Left Mouth, Right Mouth, Left Inner Eyebrow, Right Inner Eyebrow].
|
||||
|
||||
X = 0 is left of image (right = positive), Y = 0 is top of image (down = positive). X and Y range from [0 , 1].
|
||||
|
||||
Location of eyebrows are calculated from eye locations based on average distances between pupils (63mm) and between pupil to top of eyebrow (25mm).
|
||||
|
||||
Note that is folder only include files that are required for running the pretrained model (can not train a new model).
|
||||
|
||||
**REFERENCES**
|
||||
|
||||
https://github.com/ultralytics/yolov5
|
||||
|
||||
https://github.com/deepcam-cn/yolov5-face
|
||||
|
||||
https://www.techrxiv.org/articles/preprint/TFW_Annotated_Thermal_Faces_in_the_Wild_Dataset/17004538
|
||||
|
||||
**TO DO**
|
||||
|
||||
Combine landmark location information from multiple images (obtain average from burst of frames).
|
||||
|
||||
Identify central person (currently only outputting landmarks for 1 person - could be person off to the side).
|
||||
|
||||
Determine which packages in requirements.txt can be omitted.
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 235 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 130 KiB |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1,439 +0,0 @@
|
||||
# This file contains modules common to various models
|
||||
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import requests
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from PIL import Image, ImageDraw
|
||||
|
||||
from utils.datasets import letterbox
|
||||
from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh
|
||||
from utils.plots import color_list
|
||||
|
||||
def autopad(k, p=None): # kernel, padding
|
||||
# Pad to 'same'
|
||||
if p is None:
|
||||
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
||||
return p
|
||||
|
||||
def channel_shuffle(x, groups):
|
||||
batchsize, num_channels, height, width = x.data.size()
|
||||
channels_per_group = num_channels // groups
|
||||
|
||||
# reshape
|
||||
x = x.view(batchsize, groups, channels_per_group, height, width)
|
||||
x = torch.transpose(x, 1, 2).contiguous()
|
||||
|
||||
# flatten
|
||||
x = x.view(batchsize, -1, height, width)
|
||||
return x
|
||||
|
||||
def DWConv(c1, c2, k=1, s=1, act=True):
|
||||
# Depthwise convolution
|
||||
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
|
||||
|
||||
class Conv(nn.Module):
|
||||
# Standard convolution
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||||
super(Conv, self).__init__()
|
||||
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
||||
self.bn = nn.BatchNorm2d(c2)
|
||||
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
||||
#self.act = self.act = nn.LeakyReLU(0.1, inplace=True) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
||||
|
||||
def forward(self, x):
|
||||
return self.act(self.bn(self.conv(x)))
|
||||
|
||||
def fuseforward(self, x):
|
||||
return self.act(self.conv(x))
|
||||
|
||||
class StemBlock(nn.Module):
|
||||
def __init__(self, c1, c2, k=3, s=2, p=None, g=1, act=True):
|
||||
super(StemBlock, self).__init__()
|
||||
self.stem_1 = Conv(c1, c2, k, s, p, g, act)
|
||||
self.stem_2a = Conv(c2, c2 // 2, 1, 1, 0)
|
||||
self.stem_2b = Conv(c2 // 2, c2, 3, 2, 1)
|
||||
self.stem_2p = nn.MaxPool2d(kernel_size=2,stride=2,ceil_mode=True)
|
||||
self.stem_3 = Conv(c2 * 2, c2, 1, 1, 0)
|
||||
|
||||
def forward(self, x):
|
||||
stem_1_out = self.stem_1(x)
|
||||
stem_2a_out = self.stem_2a(stem_1_out)
|
||||
stem_2b_out = self.stem_2b(stem_2a_out)
|
||||
stem_2p_out = self.stem_2p(stem_1_out)
|
||||
out = self.stem_3(torch.cat((stem_2b_out,stem_2p_out),1))
|
||||
return out
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
# Standard bottleneck
|
||||
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
||||
super(Bottleneck, self).__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
||||
self.add = shortcut and c1 == c2
|
||||
|
||||
def forward(self, x):
|
||||
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||
|
||||
class BottleneckCSP(nn.Module):
|
||||
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||
super(BottleneckCSP, self).__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
||||
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
||||
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
||||
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
||||
self.act = nn.LeakyReLU(0.1, inplace=True)
|
||||
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
||||
|
||||
def forward(self, x):
|
||||
y1 = self.cv3(self.m(self.cv1(x)))
|
||||
y2 = self.cv2(x)
|
||||
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
|
||||
|
||||
|
||||
class C3(nn.Module):
|
||||
# CSP Bottleneck with 3 convolutions
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||
super(C3, self).__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = Conv(c1, c_, 1, 1)
|
||||
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
|
||||
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
||||
|
||||
def forward(self, x):
|
||||
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
|
||||
|
||||
class ShuffleV2Block(nn.Module):
|
||||
def __init__(self, inp, oup, stride):
|
||||
super(ShuffleV2Block, self).__init__()
|
||||
|
||||
if not (1 <= stride <= 3):
|
||||
raise ValueError('illegal stride value')
|
||||
self.stride = stride
|
||||
|
||||
branch_features = oup // 2
|
||||
assert (self.stride != 1) or (inp == branch_features << 1)
|
||||
|
||||
if self.stride > 1:
|
||||
self.branch1 = nn.Sequential(
|
||||
self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
|
||||
nn.BatchNorm2d(inp),
|
||||
nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
|
||||
nn.BatchNorm2d(branch_features),
|
||||
nn.SiLU(),
|
||||
)
|
||||
else:
|
||||
self.branch1 = nn.Sequential()
|
||||
|
||||
self.branch2 = nn.Sequential(
|
||||
nn.Conv2d(inp if (self.stride > 1) else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
|
||||
nn.BatchNorm2d(branch_features),
|
||||
nn.SiLU(),
|
||||
self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
|
||||
nn.BatchNorm2d(branch_features),
|
||||
nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
|
||||
nn.BatchNorm2d(branch_features),
|
||||
nn.SiLU(),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
|
||||
return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)
|
||||
|
||||
def forward(self, x):
|
||||
if self.stride == 1:
|
||||
x1, x2 = x.chunk(2, dim=1)
|
||||
out = torch.cat((x1, self.branch2(x2)), dim=1)
|
||||
else:
|
||||
out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
|
||||
out = channel_shuffle(out, 2)
|
||||
return out
|
||||
|
||||
class BlazeBlock(nn.Module):
|
||||
def __init__(self, in_channels,out_channels,mid_channels=None,stride=1):
|
||||
super(BlazeBlock, self).__init__()
|
||||
mid_channels = mid_channels or in_channels
|
||||
assert stride in [1, 2]
|
||||
if stride>1:
|
||||
self.use_pool = True
|
||||
else:
|
||||
self.use_pool = False
|
||||
|
||||
self.branch1 = nn.Sequential(
|
||||
nn.Conv2d(in_channels=in_channels,out_channels=mid_channels,kernel_size=5,stride=stride,padding=2,groups=in_channels),
|
||||
nn.BatchNorm2d(mid_channels),
|
||||
nn.Conv2d(in_channels=mid_channels,out_channels=out_channels,kernel_size=1,stride=1),
|
||||
nn.BatchNorm2d(out_channels),
|
||||
)
|
||||
|
||||
if self.use_pool:
|
||||
self.shortcut = nn.Sequential(
|
||||
nn.MaxPool2d(kernel_size=stride, stride=stride),
|
||||
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
|
||||
nn.BatchNorm2d(out_channels),
|
||||
)
|
||||
|
||||
self.relu = nn.SiLU(inplace=True)
|
||||
|
||||
def forward(self, x):
|
||||
branch1 = self.branch1(x)
|
||||
out = (branch1+self.shortcut(x)) if self.use_pool else (branch1+x)
|
||||
return self.relu(out)
|
||||
|
||||
class DoubleBlazeBlock(nn.Module):
|
||||
def __init__(self,in_channels,out_channels,mid_channels=None,stride=1):
|
||||
super(DoubleBlazeBlock, self).__init__()
|
||||
mid_channels = mid_channels or in_channels
|
||||
assert stride in [1, 2]
|
||||
if stride > 1:
|
||||
self.use_pool = True
|
||||
else:
|
||||
self.use_pool = False
|
||||
|
||||
self.branch1 = nn.Sequential(
|
||||
nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=5, stride=stride,padding=2,groups=in_channels),
|
||||
nn.BatchNorm2d(in_channels),
|
||||
nn.Conv2d(in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1),
|
||||
nn.BatchNorm2d(mid_channels),
|
||||
nn.SiLU(inplace=True),
|
||||
nn.Conv2d(in_channels=mid_channels, out_channels=mid_channels, kernel_size=5, stride=1,padding=2),
|
||||
nn.BatchNorm2d(mid_channels),
|
||||
nn.Conv2d(in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1),
|
||||
nn.BatchNorm2d(out_channels),
|
||||
)
|
||||
|
||||
if self.use_pool:
|
||||
self.shortcut = nn.Sequential(
|
||||
nn.MaxPool2d(kernel_size=stride, stride=stride),
|
||||
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
|
||||
nn.BatchNorm2d(out_channels),
|
||||
)
|
||||
|
||||
self.relu = nn.SiLU(inplace=True)
|
||||
|
||||
def forward(self, x):
|
||||
branch1 = self.branch1(x)
|
||||
out = (branch1 + self.shortcut(x)) if self.use_pool else (branch1 + x)
|
||||
return self.relu(out)
|
||||
|
||||
|
||||
class SPP(nn.Module):
|
||||
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
||||
def __init__(self, c1, c2, k=(5, 9, 13)):
|
||||
super(SPP, self).__init__()
|
||||
c_ = c1 // 2 # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
||||
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
||||
|
||||
def forward(self, x):
|
||||
x = self.cv1(x)
|
||||
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
||||
|
||||
|
||||
class Focus(nn.Module):
|
||||
# Focus wh information into c-space
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||||
super(Focus, self).__init__()
|
||||
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
||||
# self.contract = Contract(gain=2)
|
||||
|
||||
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
||||
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
|
||||
# return self.conv(self.contract(x))
|
||||
|
||||
|
||||
class Contract(nn.Module):
|
||||
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
|
||||
def __init__(self, gain=2):
|
||||
super().__init__()
|
||||
self.gain = gain
|
||||
|
||||
def forward(self, x):
|
||||
N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
|
||||
s = self.gain
|
||||
x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
|
||||
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
|
||||
return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
|
||||
|
||||
|
||||
class Expand(nn.Module):
|
||||
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
|
||||
def __init__(self, gain=2):
|
||||
super().__init__()
|
||||
self.gain = gain
|
||||
|
||||
def forward(self, x):
|
||||
N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
|
||||
s = self.gain
|
||||
x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
|
||||
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
|
||||
return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
|
||||
|
||||
|
||||
class Concat(nn.Module):
|
||||
# Concatenate a list of tensors along dimension
|
||||
def __init__(self, dimension=1):
|
||||
super(Concat, self).__init__()
|
||||
self.d = dimension
|
||||
|
||||
def forward(self, x):
|
||||
return torch.cat(x, self.d)
|
||||
|
||||
|
||||
class NMS(nn.Module):
|
||||
# Non-Maximum Suppression (NMS) module
|
||||
conf = 0.25 # confidence threshold
|
||||
iou = 0.45 # IoU threshold
|
||||
classes = None # (optional list) filter by class
|
||||
|
||||
def __init__(self):
|
||||
super(NMS, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
|
||||
|
||||
class autoShape(nn.Module):
|
||||
# input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
||||
img_size = 640 # inference size (pixels)
|
||||
conf = 0.25 # NMS confidence threshold
|
||||
iou = 0.45 # NMS IoU threshold
|
||||
classes = None # (optional list) filter by class
|
||||
|
||||
def __init__(self, model):
|
||||
super(autoShape, self).__init__()
|
||||
self.model = model.eval()
|
||||
|
||||
def autoshape(self):
|
||||
print('autoShape already enabled, skipping... ') # model already converted to model.autoshape()
|
||||
return self
|
||||
|
||||
def forward(self, imgs, size=640, augment=False, profile=False):
|
||||
# Inference from various sources. For height=720, width=1280, RGB images example inputs are:
|
||||
# filename: imgs = 'data/samples/zidane.jpg'
|
||||
# URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
|
||||
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
|
||||
# PIL: = Image.open('image.jpg') # HWC x(720,1280,3)
|
||||
# numpy: = np.zeros((720,1280,3)) # HWC
|
||||
# torch: = torch.zeros(16,3,720,1280) # BCHW
|
||||
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
||||
|
||||
p = next(self.model.parameters()) # for device and type
|
||||
if isinstance(imgs, torch.Tensor): # torch
|
||||
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
||||
|
||||
# Pre-process
|
||||
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
|
||||
shape0, shape1 = [], [] # image and inference shapes
|
||||
for i, im in enumerate(imgs):
|
||||
if isinstance(im, str): # filename or uri
|
||||
im = Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im) # open
|
||||
im = np.array(im) # to numpy
|
||||
if im.shape[0] < 5: # image in CHW
|
||||
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
||||
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
|
||||
s = im.shape[:2] # HWC
|
||||
shape0.append(s) # image shape
|
||||
g = (size / max(s)) # gain
|
||||
shape1.append([y * g for y in s])
|
||||
imgs[i] = im # update
|
||||
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
|
||||
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
|
||||
x = np.stack(x, 0) if n > 1 else x[0][None] # stack
|
||||
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
|
||||
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
|
||||
|
||||
# Inference
|
||||
with torch.no_grad():
|
||||
y = self.model(x, augment, profile)[0] # forward
|
||||
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
|
||||
|
||||
# Post-process
|
||||
for i in range(n):
|
||||
scale_coords(shape1, y[i][:, :4], shape0[i])
|
||||
|
||||
return Detections(imgs, y, self.names)
|
||||
|
||||
|
||||
class Detections:
|
||||
# detections class for YOLOv5 inference results
|
||||
def __init__(self, imgs, pred, names=None):
|
||||
super(Detections, self).__init__()
|
||||
d = pred[0].device # device
|
||||
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
|
||||
self.imgs = imgs # list of images as numpy arrays
|
||||
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
||||
self.names = names # class names
|
||||
self.xyxy = pred # xyxy pixels
|
||||
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
||||
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
||||
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
||||
self.n = len(self.pred)
|
||||
|
||||
def display(self, pprint=False, show=False, save=False, render=False):
|
||||
colors = color_list()
|
||||
for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
|
||||
str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
|
||||
if pred is not None:
|
||||
for c in pred[:, -1].unique():
|
||||
n = (pred[:, -1] == c).sum() # detections per class
|
||||
str += f'{n} {self.names[int(c)]}s, ' # add to string
|
||||
if show or save or render:
|
||||
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
|
||||
for *box, conf, cls in pred: # xyxy, confidence, class
|
||||
# str += '%s %.2f, ' % (names[int(cls)], conf) # label
|
||||
ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) # plot
|
||||
if pprint:
|
||||
print(str)
|
||||
if show:
|
||||
img.show(f'Image {i}') # show
|
||||
if save:
|
||||
f = f'results{i}.jpg'
|
||||
str += f"saved to '{f}'"
|
||||
img.save(f) # save
|
||||
if render:
|
||||
self.imgs[i] = np.asarray(img)
|
||||
|
||||
def print(self):
|
||||
self.display(pprint=True) # print results
|
||||
|
||||
def show(self):
|
||||
self.display(show=True) # show results
|
||||
|
||||
def save(self):
|
||||
self.display(save=True) # save results
|
||||
|
||||
def render(self):
|
||||
self.display(render=True) # render results
|
||||
return self.imgs
|
||||
|
||||
def __len__(self):
|
||||
return self.n
|
||||
|
||||
def tolist(self):
|
||||
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
||||
x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)]
|
||||
for d in x:
|
||||
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
||||
setattr(d, k, getattr(d, k)[0]) # pop out of list
|
||||
return x
|
||||
|
||||
|
||||
class Classify(nn.Module):
|
||||
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
||||
super(Classify, self).__init__()
|
||||
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
|
||||
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
|
||||
self.flat = nn.Flatten()
|
||||
|
||||
def forward(self, x):
|
||||
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
|
||||
return self.flat(self.conv(z)) # flatten to x(b,c2)
|
||||
@ -1,133 +0,0 @@
|
||||
# This file contains experimental modules
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from models.common import Conv, DWConv
|
||||
from utils.google_utils import attempt_download
|
||||
|
||||
|
||||
class CrossConv(nn.Module):
|
||||
# Cross Convolution Downsample
|
||||
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
||||
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
||||
super(CrossConv, self).__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
||||
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
||||
self.add = shortcut and c1 == c2
|
||||
|
||||
def forward(self, x):
|
||||
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||
|
||||
|
||||
class Sum(nn.Module):
|
||||
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
|
||||
def __init__(self, n, weight=False): # n: number of inputs
|
||||
super(Sum, self).__init__()
|
||||
self.weight = weight # apply weights boolean
|
||||
self.iter = range(n - 1) # iter object
|
||||
if weight:
|
||||
self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
|
||||
|
||||
def forward(self, x):
|
||||
y = x[0] # no weight
|
||||
if self.weight:
|
||||
w = torch.sigmoid(self.w) * 2
|
||||
for i in self.iter:
|
||||
y = y + x[i + 1] * w[i]
|
||||
else:
|
||||
for i in self.iter:
|
||||
y = y + x[i + 1]
|
||||
return y
|
||||
|
||||
|
||||
class GhostConv(nn.Module):
|
||||
# Ghost Convolution https://github.com/huawei-noah/ghostnet
|
||||
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
||||
super(GhostConv, self).__init__()
|
||||
c_ = c2 // 2 # hidden channels
|
||||
self.cv1 = Conv(c1, c_, k, s, None, g, act)
|
||||
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
|
||||
|
||||
def forward(self, x):
|
||||
y = self.cv1(x)
|
||||
return torch.cat([y, self.cv2(y)], 1)
|
||||
|
||||
|
||||
class GhostBottleneck(nn.Module):
|
||||
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
|
||||
def __init__(self, c1, c2, k, s):
|
||||
super(GhostBottleneck, self).__init__()
|
||||
c_ = c2 // 2
|
||||
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
|
||||
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
||||
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
||||
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
|
||||
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv(x) + self.shortcut(x)
|
||||
|
||||
|
||||
class MixConv2d(nn.Module):
|
||||
# Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
|
||||
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
|
||||
super(MixConv2d, self).__init__()
|
||||
groups = len(k)
|
||||
if equal_ch: # equal c_ per group
|
||||
i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
|
||||
c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
|
||||
else: # equal weight.numel() per group
|
||||
b = [c2] + [0] * groups
|
||||
a = np.eye(groups + 1, groups, k=-1)
|
||||
a -= np.roll(a, 1, axis=1)
|
||||
a *= np.array(k) ** 2
|
||||
a[0] = 1
|
||||
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
||||
|
||||
self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
|
||||
self.bn = nn.BatchNorm2d(c2)
|
||||
self.act = nn.LeakyReLU(0.1, inplace=True)
|
||||
|
||||
def forward(self, x):
|
||||
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
|
||||
|
||||
|
||||
class Ensemble(nn.ModuleList):
|
||||
# Ensemble of models
|
||||
def __init__(self):
|
||||
super(Ensemble, self).__init__()
|
||||
|
||||
def forward(self, x, augment=False):
|
||||
y = []
|
||||
for module in self:
|
||||
y.append(module(x, augment)[0])
|
||||
# y = torch.stack(y).max(0)[0] # max ensemble
|
||||
# y = torch.stack(y).mean(0) # mean ensemble
|
||||
y = torch.cat(y, 1) # nms ensemble
|
||||
return y, None # inference, train output
|
||||
|
||||
|
||||
def attempt_load(weights, map_location=None):
|
||||
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
||||
model = Ensemble()
|
||||
for w in weights if isinstance(weights, list) else [weights]:
|
||||
attempt_download(w)
|
||||
model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model
|
||||
|
||||
# Compatibility updates
|
||||
for m in model.modules():
|
||||
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
|
||||
m.inplace = True # pytorch 1.7.0 compatibility
|
||||
elif type(m) is Conv:
|
||||
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
||||
|
||||
if len(model) == 1:
|
||||
return model[-1] # return model
|
||||
else:
|
||||
print('Ensemble created with %s\n' % weights)
|
||||
for k in ['names', 'stride']:
|
||||
setattr(model, k, getattr(model[-1], k))
|
||||
return model # return ensemble
|
||||
@ -1,112 +0,0 @@
|
||||
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
|
||||
|
||||
Usage:
|
||||
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import sys
|
||||
import time
|
||||
|
||||
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import models
|
||||
from models.experimental import attempt_load
|
||||
from utils.activations import Hardswish, SiLU
|
||||
from utils.general import set_logging, check_img_size
|
||||
import onnx
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
|
||||
parser.add_argument('--img_size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
|
||||
parser.add_argument('--batch_size', type=int, default=1, help='batch size')
|
||||
parser.add_argument('--onnx2pb', action='store_true', default=False, help='export onnx to pb')
|
||||
opt = parser.parse_args()
|
||||
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
||||
print(opt)
|
||||
set_logging()
|
||||
t = time.time()
|
||||
|
||||
# Load PyTorch model
|
||||
model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model
|
||||
model.eval()
|
||||
labels = model.names
|
||||
|
||||
# Checks
|
||||
gs = int(max(model.stride)) # grid size (max stride)
|
||||
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
|
||||
|
||||
# Input
|
||||
img = torch.zeros(opt.batch_size, 3, *opt.img_size) # image size(1,3,320,192) iDetection
|
||||
|
||||
# Update model
|
||||
for k, m in model.named_modules():
|
||||
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
||||
if isinstance(m, models.common.Conv): # assign export-friendly activations
|
||||
if isinstance(m.act, nn.Hardswish):
|
||||
m.act = Hardswish()
|
||||
elif isinstance(m.act, nn.SiLU):
|
||||
m.act = SiLU()
|
||||
# elif isinstance(m, models.yolo.Detect):
|
||||
# m.forward = m.forward_export # assign forward (optional)
|
||||
if isinstance(m, models.common.ShuffleV2Block):#shufflenet block nn.SiLU
|
||||
for i in range(len(m.branch1)):
|
||||
if isinstance(m.branch1[i], nn.SiLU):
|
||||
m.branch1[i] = SiLU()
|
||||
for i in range(len(m.branch2)):
|
||||
if isinstance(m.branch2[i], nn.SiLU):
|
||||
m.branch2[i] = SiLU()
|
||||
model.model[-1].export = True # set Detect() layer export=True
|
||||
y = model(img) # dry run
|
||||
|
||||
# ONNX export
|
||||
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
|
||||
f = opt.weights.replace('.pt', '.onnx') # filename
|
||||
model.fuse() # only for ONNX
|
||||
input_names=['data']
|
||||
output_names=['stride_' + str(int(x)) for x in model.stride]
|
||||
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=input_names,
|
||||
output_names=output_names)
|
||||
|
||||
# Checks
|
||||
onnx_model = onnx.load(f) # load onnx model
|
||||
onnx.checker.check_model(onnx_model) # check onnx model
|
||||
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
||||
print('ONNX export success, saved as %s' % f)
|
||||
# Finish
|
||||
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
|
||||
|
||||
# PB export
|
||||
if opt.onnx2pb:
|
||||
print('download the newest onnx_tf by https://github.com/onnx/onnx-tensorflow/tree/master/onnx_tf')
|
||||
from onnx_tf.backend import prepare
|
||||
import tensorflow as tf
|
||||
|
||||
outpb = f.replace('.onnx', '.pb') # filename
|
||||
# strict=True maybe leads to KeyError: 'pyfunc_0', check: https://github.com/onnx/onnx-tensorflow/issues/167
|
||||
tf_rep = prepare(onnx_model, strict=False) # prepare tf representation
|
||||
tf_rep.export_graph(outpb) # export the model
|
||||
|
||||
out_onnx = tf_rep.run(img) # onnx output
|
||||
|
||||
# check pb
|
||||
with tf.Graph().as_default():
|
||||
graph_def = tf.GraphDef()
|
||||
with open(outpb, "rb") as f:
|
||||
graph_def.ParseFromString(f.read())
|
||||
tf.import_graph_def(graph_def, name="")
|
||||
with tf.Session() as sess:
|
||||
init = tf.global_variables_initializer()
|
||||
input_x = sess.graph.get_tensor_by_name(input_names[0]+':0') # input
|
||||
outputs = []
|
||||
for i in output_names:
|
||||
outputs.append(sess.graph.get_tensor_by_name(i+':0'))
|
||||
out_pb = sess.run(outputs, feed_dict={input_x: img})
|
||||
|
||||
print(f'out_pytorch {y}')
|
||||
print(f'out_onnx {out_onnx}')
|
||||
print(f'out_pb {out_pb}')
|
||||
@ -1,343 +0,0 @@
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import sys
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, C3, ShuffleV2Block, Concat, NMS, autoShape, StemBlock, BlazeBlock, DoubleBlazeBlock
|
||||
from models.experimental import MixConv2d, CrossConv
|
||||
from utils.autoanchor import check_anchor_order
|
||||
from utils.general import make_divisible, check_file, set_logging
|
||||
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
|
||||
select_device, copy_attr
|
||||
|
||||
try:
|
||||
import thop # for FLOPS computation
|
||||
except ImportError:
|
||||
thop = None
|
||||
|
||||
|
||||
class Detect(nn.Module):
|
||||
stride = None # strides computed during build
|
||||
export = False # onnx export
|
||||
export_cat = False # onnx export cat output
|
||||
|
||||
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
|
||||
super(Detect, self).__init__()
|
||||
self.nc = nc # number of classes
|
||||
#self.no = nc + 5 # number of outputs per anchor
|
||||
self.no = nc + 5 + 10 # number of outputs per anchor
|
||||
|
||||
self.nl = len(anchors) # number of detection layers
|
||||
self.na = len(anchors[0]) // 2 # number of anchors
|
||||
self.grid = [torch.zeros(1)] * self.nl # init grid
|
||||
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
||||
self.register_buffer('anchors', a) # shape(nl,na,2)
|
||||
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
||||
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
||||
|
||||
def forward(self, x):
|
||||
# x = x.copy() # for profiling
|
||||
z = [] # inference output
|
||||
# self.training |= self.export
|
||||
if self.export:
|
||||
for i in range(self.nl):
|
||||
x[i] = self.m[i](x[i])
|
||||
bs, _, ny, nx = x[i].shape # x(bs,48,20,20) to x(bs,3,20,20,16)
|
||||
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
||||
|
||||
return x
|
||||
if self.export_cat:
|
||||
for i in range(self.nl):
|
||||
x[i] = self.m[i](x[i]) # conv
|
||||
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
||||
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
||||
|
||||
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
||||
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
||||
|
||||
y = torch.full_like(x[i], 0)
|
||||
y = y + torch.cat((x[i][:, :, :, :, 0:5].sigmoid(), torch.cat((x[i][:, :, :, :, 5:15], x[i][:, :, :, :, 15:15+self.nc].sigmoid()), 4)), 4)
|
||||
|
||||
box_xy = (y[:, :, :, :, 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
|
||||
box_wh = (y[:, :, :, :, 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
||||
# box_conf = torch.cat((box_xy, torch.cat((box_wh, y[:, :, :, :, 4:5]), 4)), 4)
|
||||
|
||||
landm1 = y[:, :, :, :, 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x1 y1
|
||||
landm2 = y[:, :, :, :, 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x2 y2
|
||||
landm3 = y[:, :, :, :, 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x3 y3
|
||||
landm4 = y[:, :, :, :, 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x4 y4
|
||||
landm5 = y[:, :, :, :, 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x5 y5
|
||||
# landm = torch.cat((landm1, torch.cat((landm2, torch.cat((landm3, torch.cat((landm4, landm5), 4)), 4)), 4)), 4)
|
||||
# y = torch.cat((box_conf, torch.cat((landm, y[:, :, :, :, 15:15+self.nc]), 4)), 4)
|
||||
y = torch.cat([box_xy, box_wh, y[:, :, :, :, 4:5], landm1, landm2, landm3, landm4, landm5, y[:, :, :, :, 15:15+self.nc]], -1)
|
||||
|
||||
z.append(y.view(bs, -1, self.no))
|
||||
return torch.cat(z, 1)
|
||||
|
||||
for i in range(self.nl):
|
||||
x[i] = self.m[i](x[i]) # conv
|
||||
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
||||
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
||||
|
||||
if not self.training: # inference
|
||||
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
||||
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
||||
|
||||
y = torch.full_like(x[i], 0)
|
||||
class_range = list(range(5)) + list(range(15,15+self.nc))
|
||||
y[..., class_range] = x[i][..., class_range].sigmoid()
|
||||
y[..., 5:15] = x[i][..., 5:15]
|
||||
#y = x[i].sigmoid()
|
||||
|
||||
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
|
||||
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
||||
|
||||
#y[..., 5:15] = y[..., 5:15] * 8 - 4
|
||||
y[..., 5:7] = y[..., 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x1 y1
|
||||
y[..., 7:9] = y[..., 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x2 y2
|
||||
y[..., 9:11] = y[..., 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x3 y3
|
||||
y[..., 11:13] = y[..., 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x4 y4
|
||||
y[..., 13:15] = y[..., 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x5 y5
|
||||
|
||||
#y[..., 5:7] = (y[..., 5:7] * 2 -1) * self.anchor_grid[i] # landmark x1 y1
|
||||
#y[..., 7:9] = (y[..., 7:9] * 2 -1) * self.anchor_grid[i] # landmark x2 y2
|
||||
#y[..., 9:11] = (y[..., 9:11] * 2 -1) * self.anchor_grid[i] # landmark x3 y3
|
||||
#y[..., 11:13] = (y[..., 11:13] * 2 -1) * self.anchor_grid[i] # landmark x4 y4
|
||||
#y[..., 13:15] = (y[..., 13:15] * 2 -1) * self.anchor_grid[i] # landmark x5 y5
|
||||
|
||||
z.append(y.view(bs, -1, self.no))
|
||||
|
||||
return x if self.training else (torch.cat(z, 1), x)
|
||||
|
||||
@staticmethod
|
||||
def _make_grid(nx=20, ny=20):
|
||||
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
||||
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes
|
||||
super(Model, self).__init__()
|
||||
if isinstance(cfg, dict):
|
||||
self.yaml = cfg # model dict
|
||||
else: # is *.yaml
|
||||
import yaml # for torch hub
|
||||
self.yaml_file = Path(cfg).name
|
||||
with open(cfg) as f:
|
||||
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
||||
|
||||
# Define model
|
||||
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
||||
if nc and nc != self.yaml['nc']:
|
||||
logger.info('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc))
|
||||
self.yaml['nc'] = nc # override yaml value
|
||||
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
||||
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
||||
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
|
||||
|
||||
# Build strides, anchors
|
||||
m = self.model[-1] # Detect()
|
||||
if isinstance(m, Detect):
|
||||
s = 128 # 2x min stride
|
||||
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
||||
m.anchors /= m.stride.view(-1, 1, 1)
|
||||
check_anchor_order(m)
|
||||
self.stride = m.stride
|
||||
self._initialize_biases() # only run once
|
||||
# print('Strides: %s' % m.stride.tolist())
|
||||
|
||||
# Init weights, biases
|
||||
initialize_weights(self)
|
||||
self.info()
|
||||
logger.info('')
|
||||
|
||||
def forward(self, x, augment=False, profile=False):
|
||||
if augment:
|
||||
img_size = x.shape[-2:] # height, width
|
||||
s = [1, 0.83, 0.67] # scales
|
||||
f = [None, 3, None] # flips (2-ud, 3-lr)
|
||||
y = [] # outputs
|
||||
for si, fi in zip(s, f):
|
||||
xi = scale_img(x.flip(fi) if fi else x, si)
|
||||
yi = self.forward_once(xi)[0] # forward
|
||||
# cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
||||
yi[..., :4] /= si # de-scale
|
||||
if fi == 2:
|
||||
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
|
||||
elif fi == 3:
|
||||
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
|
||||
y.append(yi)
|
||||
return torch.cat(y, 1), None # augmented inference, train
|
||||
else:
|
||||
return self.forward_once(x, profile) # single-scale inference, train
|
||||
|
||||
def forward_once(self, x, profile=False):
|
||||
y, dt = [], [] # outputs
|
||||
for m in self.model:
|
||||
if m.f != -1: # if not from previous layer
|
||||
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
||||
|
||||
if profile:
|
||||
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
|
||||
t = time_synchronized()
|
||||
for _ in range(10):
|
||||
_ = m(x)
|
||||
dt.append((time_synchronized() - t) * 100)
|
||||
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
|
||||
|
||||
x = m(x) # run
|
||||
y.append(x if m.i in self.save else None) # save output
|
||||
|
||||
if profile:
|
||||
print('%.1fms total' % sum(dt))
|
||||
return x
|
||||
|
||||
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
||||
# https://arxiv.org/abs/1708.02002 section 3.3
|
||||
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
||||
m = self.model[-1] # Detect() module
|
||||
for mi, s in zip(m.m, m.stride): # from
|
||||
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
||||
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
||||
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
||||
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
||||
|
||||
def _print_biases(self):
|
||||
m = self.model[-1] # Detect() module
|
||||
for mi in m.m: # from
|
||||
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
||||
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
|
||||
|
||||
# def _print_weights(self):
|
||||
# for m in self.model.modules():
|
||||
# if type(m) is Bottleneck:
|
||||
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
|
||||
|
||||
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
||||
print('Fusing layers... ')
|
||||
for m in self.model.modules():
|
||||
if type(m) is Conv and hasattr(m, 'bn'):
|
||||
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
||||
delattr(m, 'bn') # remove batchnorm
|
||||
m.forward = m.fuseforward # update forward
|
||||
self.info()
|
||||
return self
|
||||
|
||||
def nms(self, mode=True): # add or remove NMS module
|
||||
present = type(self.model[-1]) is NMS # last layer is NMS
|
||||
if mode and not present:
|
||||
print('Adding NMS... ')
|
||||
m = NMS() # module
|
||||
m.f = -1 # from
|
||||
m.i = self.model[-1].i + 1 # index
|
||||
self.model.add_module(name='%s' % m.i, module=m) # add
|
||||
self.eval()
|
||||
elif not mode and present:
|
||||
print('Removing NMS... ')
|
||||
self.model = self.model[:-1] # remove
|
||||
return self
|
||||
|
||||
def autoshape(self): # add autoShape module
|
||||
print('Adding autoShape... ')
|
||||
m = autoShape(self) # wrap model
|
||||
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
|
||||
return m
|
||||
|
||||
def info(self, verbose=False, img_size=640): # print model information
|
||||
model_info(self, verbose, img_size)
|
||||
|
||||
|
||||
def parse_model(d, ch): # model_dict, input_channels(3)
|
||||
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
|
||||
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
||||
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
||||
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
||||
|
||||
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
||||
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
||||
m = eval(m) if isinstance(m, str) else m # eval strings
|
||||
for j, a in enumerate(args):
|
||||
try:
|
||||
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
||||
except:
|
||||
pass
|
||||
|
||||
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
||||
if m in [Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, ShuffleV2Block, StemBlock, BlazeBlock, DoubleBlazeBlock]:
|
||||
c1, c2 = ch[f], args[0]
|
||||
|
||||
# Normal
|
||||
# if i > 0 and args[0] != no: # channel expansion factor
|
||||
# ex = 1.75 # exponential (default 2.0)
|
||||
# e = math.log(c2 / ch[1]) / math.log(2)
|
||||
# c2 = int(ch[1] * ex ** e)
|
||||
# if m != Focus:
|
||||
|
||||
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
|
||||
|
||||
# Experimental
|
||||
# if i > 0 and args[0] != no: # channel expansion factor
|
||||
# ex = 1 + gw # exponential (default 2.0)
|
||||
# ch1 = 32 # ch[1]
|
||||
# e = math.log(c2 / ch1) / math.log(2) # level 1-n
|
||||
# c2 = int(ch1 * ex ** e)
|
||||
# if m != Focus:
|
||||
# c2 = make_divisible(c2, 8) if c2 != no else c2
|
||||
|
||||
args = [c1, c2, *args[1:]]
|
||||
if m in [BottleneckCSP, C3]:
|
||||
args.insert(2, n)
|
||||
n = 1
|
||||
elif m is nn.BatchNorm2d:
|
||||
args = [ch[f]]
|
||||
elif m is Concat:
|
||||
c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])
|
||||
elif m is Detect:
|
||||
args.append([ch[x + 1] for x in f])
|
||||
if isinstance(args[1], int): # number of anchors
|
||||
args[1] = [list(range(args[1] * 2))] * len(f)
|
||||
else:
|
||||
c2 = ch[f]
|
||||
|
||||
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
|
||||
t = str(m)[8:-2].replace('__main__.', '') # module type
|
||||
np = sum([x.numel() for x in m_.parameters()]) # number params
|
||||
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
||||
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
|
||||
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
||||
layers.append(m_)
|
||||
ch.append(c2)
|
||||
return nn.Sequential(*layers), sorted(save)
|
||||
|
||||
|
||||
from thop import profile
|
||||
from thop import clever_format
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
|
||||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||
opt = parser.parse_args()
|
||||
opt.cfg = check_file(opt.cfg) # check file
|
||||
set_logging()
|
||||
device = select_device(opt.device)
|
||||
|
||||
# Create model
|
||||
model = Model(opt.cfg).to(device)
|
||||
stride = model.stride.max()
|
||||
if stride == 32:
|
||||
input = torch.Tensor(1, 3, 480, 640).to(device)
|
||||
else:
|
||||
input = torch.Tensor(1, 3, 512, 640).to(device)
|
||||
model.train()
|
||||
print(model)
|
||||
flops, params = profile(model, inputs=(input, ))
|
||||
flops, params = clever_format([flops, params], "%.3f")
|
||||
print('Flops:', flops, ',Params:' ,params)
|
||||
@ -1,36 +0,0 @@
|
||||
# pip install -r requirements.txt
|
||||
|
||||
# Base ----------------------------------------
|
||||
matplotlib>=3.2.2
|
||||
numpy>=1.18.5
|
||||
opencv-python>=4.1.2
|
||||
Pillow>=7.1.2
|
||||
PyYAML>=5.3.1
|
||||
requests>=2.23.0
|
||||
scipy>=1.4.1
|
||||
torch>=1.7.0
|
||||
torchvision>=0.8.1
|
||||
tqdm>=4.41.0
|
||||
|
||||
# Logging -------------------------------------
|
||||
tensorboard>=2.4.1
|
||||
# wandb
|
||||
|
||||
# Plotting ------------------------------------
|
||||
pandas>=1.1.4
|
||||
seaborn>=0.11.0
|
||||
|
||||
# Export --------------------------------------
|
||||
# coremltools>=4.1 # CoreML export
|
||||
# onnx>=1.9.0 # ONNX export
|
||||
# onnx-simplifier>=0.3.6 # ONNX simplifier
|
||||
# scikit-learn==0.19.2 # CoreML quantization
|
||||
# tensorflow>=2.4.1 # TFLite export
|
||||
# tensorflowjs>=3.9.0 # TF.js export
|
||||
|
||||
# Extras --------------------------------------
|
||||
# albumentations>=1.0.3
|
||||
# Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
|
||||
# pycocotools>=2.0 # COCO mAP
|
||||
# roboflow
|
||||
thop # FLOPs computation
|
||||
Binary file not shown.
@ -1,28 +0,0 @@
|
||||
lr0: 0.01
|
||||
lrf: 0.2
|
||||
momentum: 0.937
|
||||
weight_decay: 0.0005
|
||||
warmup_epochs: 3.0
|
||||
warmup_momentum: 0.8
|
||||
warmup_bias_lr: 0.1
|
||||
box: 0.05
|
||||
cls: 0.5
|
||||
landmark: 0.005
|
||||
cls_pw: 1.0
|
||||
obj: 1.0
|
||||
obj_pw: 1.0
|
||||
iou_t: 0.2
|
||||
anchor_t: 4.0
|
||||
fl_gamma: 0.0
|
||||
hsv_h: 0.015
|
||||
hsv_s: 0.7
|
||||
hsv_v: 0.4
|
||||
degrees: 0.0
|
||||
translate: 0.1
|
||||
scale: 0.5
|
||||
shear: 0.5
|
||||
perspective: 0.0
|
||||
flipud: 0.0
|
||||
fliplr: 0.5
|
||||
mosaic: 0.5
|
||||
mixup: 0.0
|
||||
@ -1,34 +0,0 @@
|
||||
weights: pretrained models
|
||||
cfg: models/yolov5s.yaml
|
||||
data: data/widerface.yaml
|
||||
hyp: data/hyp.scratch.yaml
|
||||
epochs: 250
|
||||
batch_size: 16
|
||||
img_size:
|
||||
- 800
|
||||
- 800
|
||||
rect: false
|
||||
resume: false
|
||||
nosave: false
|
||||
notest: false
|
||||
noautoanchor: false
|
||||
evolve: false
|
||||
bucket: ''
|
||||
cache_images: false
|
||||
image_weights: false
|
||||
device: ''
|
||||
multi_scale: false
|
||||
single_cls: false
|
||||
adam: false
|
||||
sync_bn: false
|
||||
local_rank: -1
|
||||
log_imgs: 16
|
||||
log_artifacts: false
|
||||
workers: 4
|
||||
project: runs/train
|
||||
name: exp
|
||||
exist_ok: false
|
||||
total_batch_size: 16
|
||||
world_size: 1
|
||||
global_rank: -1
|
||||
save_dir: runs/train/exp
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1,72 +0,0 @@
|
||||
# Activation functions
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
|
||||
class SiLU(nn.Module): # export-friendly version of nn.SiLU()
|
||||
@staticmethod
|
||||
def forward(x):
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
|
||||
@staticmethod
|
||||
def forward(x):
|
||||
# return x * F.hardsigmoid(x) # for torchscript and CoreML
|
||||
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
|
||||
|
||||
|
||||
class MemoryEfficientSwish(nn.Module):
|
||||
class F(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x):
|
||||
ctx.save_for_backward(x)
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
x = ctx.saved_tensors[0]
|
||||
sx = torch.sigmoid(x)
|
||||
return grad_output * (sx * (1 + x * (1 - sx)))
|
||||
|
||||
def forward(self, x):
|
||||
return self.F.apply(x)
|
||||
|
||||
|
||||
# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
|
||||
class Mish(nn.Module):
|
||||
@staticmethod
|
||||
def forward(x):
|
||||
return x * F.softplus(x).tanh()
|
||||
|
||||
|
||||
class MemoryEfficientMish(nn.Module):
|
||||
class F(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x):
|
||||
ctx.save_for_backward(x)
|
||||
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
x = ctx.saved_tensors[0]
|
||||
sx = torch.sigmoid(x)
|
||||
fx = F.softplus(x).tanh()
|
||||
return grad_output * (fx + x * sx * (1 - fx * fx))
|
||||
|
||||
def forward(self, x):
|
||||
return self.F.apply(x)
|
||||
|
||||
|
||||
# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
|
||||
class FReLU(nn.Module):
|
||||
def __init__(self, c1, k=3): # ch_in, kernel
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
|
||||
self.bn = nn.BatchNorm2d(c1)
|
||||
|
||||
def forward(self, x):
|
||||
return torch.max(x, self.bn(self.conv(x)))
|
||||
@ -1,155 +0,0 @@
|
||||
# Auto-anchor utils
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import yaml
|
||||
from scipy.cluster.vq import kmeans
|
||||
from tqdm import tqdm
|
||||
|
||||
from utils.general import colorstr
|
||||
|
||||
|
||||
def check_anchor_order(m):
|
||||
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
||||
a = m.anchor_grid.prod(-1).view(-1) # anchor area
|
||||
da = a[-1] - a[0] # delta a
|
||||
ds = m.stride[-1] - m.stride[0] # delta s
|
||||
if da.sign() != ds.sign(): # same order
|
||||
print('Reversing anchor order')
|
||||
m.anchors[:] = m.anchors.flip(0)
|
||||
m.anchor_grid[:] = m.anchor_grid.flip(0)
|
||||
|
||||
|
||||
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
||||
# Check anchor fit to data, recompute if necessary
|
||||
prefix = colorstr('autoanchor: ')
|
||||
print(f'\n{prefix}Analyzing anchors... ', end='')
|
||||
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
||||
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
||||
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
||||
|
||||
def metric(k): # compute metric
|
||||
r = wh[:, None] / k[None]
|
||||
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
||||
best = x.max(1)[0] # best_x
|
||||
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
|
||||
bpr = (best > 1. / thr).float().mean() # best possible recall
|
||||
return bpr, aat
|
||||
|
||||
bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
|
||||
print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
|
||||
if bpr < 0.98: # threshold to recompute
|
||||
print('. Attempting to improve anchors, please wait...')
|
||||
na = m.anchor_grid.numel() // 2 # number of anchors
|
||||
new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
||||
new_bpr = metric(new_anchors.reshape(-1, 2))[0]
|
||||
if new_bpr > bpr: # replace anchors
|
||||
new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)
|
||||
m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference
|
||||
m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
|
||||
check_anchor_order(m)
|
||||
print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
|
||||
else:
|
||||
print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
|
||||
print('') # newline
|
||||
|
||||
|
||||
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
||||
""" Creates kmeans-evolved anchors from training dataset
|
||||
|
||||
Arguments:
|
||||
path: path to dataset *.yaml, or a loaded dataset
|
||||
n: number of anchors
|
||||
img_size: image size used for training
|
||||
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
||||
gen: generations to evolve anchors using genetic algorithm
|
||||
verbose: print all results
|
||||
|
||||
Return:
|
||||
k: kmeans evolved anchors
|
||||
|
||||
Usage:
|
||||
from utils.autoanchor import *; _ = kmean_anchors()
|
||||
"""
|
||||
thr = 1. / thr
|
||||
prefix = colorstr('autoanchor: ')
|
||||
|
||||
def metric(k, wh): # compute metrics
|
||||
r = wh[:, None] / k[None]
|
||||
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
||||
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
||||
return x, x.max(1)[0] # x, best_x
|
||||
|
||||
def anchor_fitness(k): # mutation fitness
|
||||
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
||||
return (best * (best > thr).float()).mean() # fitness
|
||||
|
||||
def print_results(k):
|
||||
k = k[np.argsort(k.prod(1))] # sort small to large
|
||||
x, best = metric(k, wh0)
|
||||
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
||||
print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
|
||||
print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
|
||||
f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
|
||||
for i, x in enumerate(k):
|
||||
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
|
||||
return k
|
||||
|
||||
if isinstance(path, str): # *.yaml file
|
||||
with open(path) as f:
|
||||
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
|
||||
from utils.datasets import LoadImagesAndLabels
|
||||
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
||||
else:
|
||||
dataset = path # dataset
|
||||
|
||||
# Get label wh
|
||||
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
||||
|
||||
# Filter
|
||||
i = (wh0 < 3.0).any(1).sum()
|
||||
if i:
|
||||
print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
|
||||
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
|
||||
# wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
|
||||
|
||||
# Kmeans calculation
|
||||
print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
|
||||
s = wh.std(0) # sigmas for whitening
|
||||
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
|
||||
k *= s
|
||||
wh = torch.tensor(wh, dtype=torch.float32) # filtered
|
||||
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
|
||||
k = print_results(k)
|
||||
|
||||
# Plot
|
||||
# k, d = [None] * 20, [None] * 20
|
||||
# for i in tqdm(range(1, 21)):
|
||||
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
||||
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
|
||||
# ax = ax.ravel()
|
||||
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
||||
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
||||
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
||||
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
||||
# fig.savefig('wh.png', dpi=200)
|
||||
|
||||
# Evolve
|
||||
npr = np.random
|
||||
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
||||
pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
|
||||
for _ in pbar:
|
||||
v = np.ones(sh)
|
||||
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
||||
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
||||
kg = (k.copy() * v).clip(min=2.0)
|
||||
fg = anchor_fitness(kg)
|
||||
if fg > f:
|
||||
f, k = fg, kg.copy()
|
||||
pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
|
||||
if verbose:
|
||||
print_results(k)
|
||||
|
||||
return print_results(k)
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,834 +0,0 @@
|
||||
import glob
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import shutil
|
||||
import time
|
||||
from itertools import repeat
|
||||
from multiprocessing.pool import ThreadPool
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image, ExifTags
|
||||
from torch.utils.data import Dataset
|
||||
from tqdm import tqdm
|
||||
|
||||
from utils.general import xyxy2xywh, xywh2xyxy, clean_str
|
||||
from utils.torch_utils import torch_distributed_zero_first
|
||||
|
||||
|
||||
# Parameters
|
||||
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
||||
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
|
||||
vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Get orientation exif tag
|
||||
for orientation in ExifTags.TAGS.keys():
|
||||
if ExifTags.TAGS[orientation] == 'Orientation':
|
||||
break
|
||||
|
||||
def get_hash(files):
|
||||
# Returns a single hash value of a list of files
|
||||
return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
|
||||
|
||||
def img2label_paths(img_paths):
|
||||
# Define label paths as a function of image paths
|
||||
sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
|
||||
return [x.replace(sa, sb, 1).replace('.' + x.split('.')[-1], '.txt') for x in img_paths]
|
||||
|
||||
def exif_size(img):
|
||||
# Returns exif-corrected PIL size
|
||||
s = img.size # (width, height)
|
||||
try:
|
||||
rotation = dict(img._getexif().items())[orientation]
|
||||
if rotation == 6: # rotation 270
|
||||
s = (s[1], s[0])
|
||||
elif rotation == 8: # rotation 90
|
||||
s = (s[1], s[0])
|
||||
except:
|
||||
pass
|
||||
|
||||
return s
|
||||
|
||||
def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
|
||||
rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
|
||||
# Make sure only the first process in DDP process the dataset first, and the following others can use the cache
|
||||
with torch_distributed_zero_first(rank):
|
||||
dataset = LoadFaceImagesAndLabels(path, imgsz, batch_size,
|
||||
augment=augment, # augment images
|
||||
hyp=hyp, # augmentation hyperparameters
|
||||
rect=rect, # rectangular training
|
||||
cache_images=cache,
|
||||
single_cls=opt.single_cls,
|
||||
stride=int(stride),
|
||||
pad=pad,
|
||||
image_weights=image_weights,
|
||||
)
|
||||
|
||||
batch_size = min(batch_size, len(dataset))
|
||||
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
|
||||
sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
|
||||
loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
|
||||
# Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
|
||||
dataloader = loader(dataset,
|
||||
batch_size=batch_size,
|
||||
num_workers=nw,
|
||||
sampler=sampler,
|
||||
pin_memory=True,
|
||||
collate_fn=LoadFaceImagesAndLabels.collate_fn4 if quad else LoadFaceImagesAndLabels.collate_fn)
|
||||
return dataloader, dataset
|
||||
class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
|
||||
""" Dataloader that reuses workers
|
||||
|
||||
Uses same syntax as vanilla DataLoader
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
|
||||
self.iterator = super().__iter__()
|
||||
|
||||
def __len__(self):
|
||||
return len(self.batch_sampler.sampler)
|
||||
|
||||
def __iter__(self):
|
||||
for i in range(len(self)):
|
||||
yield next(self.iterator)
|
||||
class _RepeatSampler(object):
|
||||
""" Sampler that repeats forever
|
||||
|
||||
Args:
|
||||
sampler (Sampler)
|
||||
"""
|
||||
|
||||
def __init__(self, sampler):
|
||||
self.sampler = sampler
|
||||
|
||||
def __iter__(self):
|
||||
while True:
|
||||
yield from iter(self.sampler)
|
||||
|
||||
class LoadFaceImagesAndLabels(Dataset): # for training/testing
|
||||
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
|
||||
cache_images=False, single_cls=False, stride=32, pad=0.0, rank=-1):
|
||||
self.img_size = img_size
|
||||
self.augment = augment
|
||||
self.hyp = hyp
|
||||
self.image_weights = image_weights
|
||||
self.rect = False if image_weights else rect
|
||||
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
|
||||
self.mosaic_border = [-img_size // 2, -img_size // 2]
|
||||
self.stride = stride
|
||||
|
||||
try:
|
||||
f = [] # image files
|
||||
for p in path if isinstance(path, list) else [path]:
|
||||
p = Path(p) # os-agnostic
|
||||
if p.is_dir(): # dir
|
||||
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
|
||||
elif p.is_file(): # file
|
||||
with open(p, 'r') as t:
|
||||
t = t.read().strip().splitlines()
|
||||
parent = str(p.parent) + os.sep
|
||||
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
|
||||
else:
|
||||
raise Exception('%s does not exist' % p)
|
||||
self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
|
||||
assert self.img_files, 'No images found'
|
||||
except Exception as e:
|
||||
raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
|
||||
|
||||
# Check cache
|
||||
self.label_files = img2label_paths(self.img_files) # labels
|
||||
cache_path = Path(self.label_files[0]).parent.with_suffix('.cache') # cached labels
|
||||
if cache_path.is_file():
|
||||
cache = torch.load(cache_path) # load
|
||||
if cache['hash'] != get_hash(self.label_files + self.img_files) or 'results' not in cache: # changed
|
||||
cache = self.cache_labels(cache_path) # re-cache
|
||||
else:
|
||||
cache = self.cache_labels(cache_path) # cache
|
||||
|
||||
# Display cache
|
||||
[nf, nm, ne, nc, n] = cache.pop('results') # found, missing, empty, corrupted, total
|
||||
desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
|
||||
tqdm(None, desc=desc, total=n, initial=n)
|
||||
assert nf > 0 or not augment, f'No labels found in {cache_path}. Can not train without labels. See {help_url}'
|
||||
|
||||
# Read cache
|
||||
cache.pop('hash') # remove hash
|
||||
labels, shapes = zip(*cache.values())
|
||||
self.labels = list(labels)
|
||||
self.shapes = np.array(shapes, dtype=np.float64)
|
||||
self.img_files = list(cache.keys()) # update
|
||||
self.label_files = img2label_paths(cache.keys()) # update
|
||||
if single_cls:
|
||||
for x in self.labels:
|
||||
x[:, 0] = 0
|
||||
|
||||
n = len(shapes) # number of images
|
||||
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
|
||||
nb = bi[-1] + 1 # number of batches
|
||||
self.batch = bi # batch index of image
|
||||
self.n = n
|
||||
self.indices = range(n)
|
||||
|
||||
# Rectangular Training
|
||||
if self.rect:
|
||||
# Sort by aspect ratio
|
||||
s = self.shapes # wh
|
||||
ar = s[:, 1] / s[:, 0] # aspect ratio
|
||||
irect = ar.argsort()
|
||||
self.img_files = [self.img_files[i] for i in irect]
|
||||
self.label_files = [self.label_files[i] for i in irect]
|
||||
self.labels = [self.labels[i] for i in irect]
|
||||
self.shapes = s[irect] # wh
|
||||
ar = ar[irect]
|
||||
|
||||
# Set training image shapes
|
||||
shapes = [[1, 1]] * nb
|
||||
for i in range(nb):
|
||||
ari = ar[bi == i]
|
||||
mini, maxi = ari.min(), ari.max()
|
||||
if maxi < 1:
|
||||
shapes[i] = [maxi, 1]
|
||||
elif mini > 1:
|
||||
shapes[i] = [1, 1 / mini]
|
||||
|
||||
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
|
||||
|
||||
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
|
||||
self.imgs = [None] * n
|
||||
if cache_images:
|
||||
gb = 0 # Gigabytes of cached images
|
||||
self.img_hw0, self.img_hw = [None] * n, [None] * n
|
||||
results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads
|
||||
pbar = tqdm(enumerate(results), total=n)
|
||||
for i, x in pbar:
|
||||
self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
|
||||
gb += self.imgs[i].nbytes
|
||||
pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
|
||||
|
||||
def cache_labels(self, path=Path('./labels.cache')):
|
||||
# Cache dataset labels, check images and read shapes
|
||||
x = {} # dict
|
||||
nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
|
||||
pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
|
||||
for i, (im_file, lb_file) in enumerate(pbar):
|
||||
try:
|
||||
# verify images
|
||||
im = Image.open(im_file)
|
||||
im.verify() # PIL verify
|
||||
shape = exif_size(im) # image size
|
||||
assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
|
||||
|
||||
# verify labels
|
||||
if os.path.isfile(lb_file):
|
||||
nf += 1 # label found
|
||||
with open(lb_file, 'r') as f:
|
||||
l = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
|
||||
if len(l):
|
||||
assert l.shape[1] == 15, 'labels require 15 columns each'
|
||||
assert (l >= -1).all(), 'negative labels'
|
||||
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
|
||||
assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
|
||||
else:
|
||||
ne += 1 # label empty
|
||||
l = np.zeros((0, 15), dtype=np.float32)
|
||||
else:
|
||||
nm += 1 # label missing
|
||||
l = np.zeros((0, 15), dtype=np.float32)
|
||||
x[im_file] = [l, shape]
|
||||
except Exception as e:
|
||||
nc += 1
|
||||
print('WARNING: Ignoring corrupted image and/or label %s: %s' % (im_file, e))
|
||||
|
||||
pbar.desc = f"Scanning '{path.parent / path.stem}' for images and labels... " \
|
||||
f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
|
||||
|
||||
if nf == 0:
|
||||
print(f'WARNING: No labels found in {path}. See {help_url}')
|
||||
|
||||
x['hash'] = get_hash(self.label_files + self.img_files)
|
||||
x['results'] = [nf, nm, ne, nc, i + 1]
|
||||
torch.save(x, path) # save for next time
|
||||
logging.info(f"New cache created: {path}")
|
||||
return x
|
||||
|
||||
def __len__(self):
|
||||
return len(self.img_files)
|
||||
|
||||
# def __iter__(self):
|
||||
# self.count = -1
|
||||
# print('ran dataset iter')
|
||||
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
||||
# return self
|
||||
|
||||
def __getitem__(self, index):
|
||||
index = self.indices[index] # linear, shuffled, or image_weights
|
||||
|
||||
hyp = self.hyp
|
||||
mosaic = self.mosaic and random.random() < hyp['mosaic']
|
||||
if mosaic:
|
||||
# Load mosaic
|
||||
img, labels = load_mosaic_face(self, index)
|
||||
shapes = None
|
||||
|
||||
# MixUp https://arxiv.org/pdf/1710.09412.pdf
|
||||
if random.random() < hyp['mixup']:
|
||||
img2, labels2 = load_mosaic_face(self, random.randint(0, self.n - 1))
|
||||
r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
|
||||
img = (img * r + img2 * (1 - r)).astype(np.uint8)
|
||||
labels = np.concatenate((labels, labels2), 0)
|
||||
|
||||
else:
|
||||
# Load image
|
||||
img, (h0, w0), (h, w) = load_image(self, index)
|
||||
|
||||
# Letterbox
|
||||
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
|
||||
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
||||
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
||||
|
||||
# Load labels
|
||||
labels = []
|
||||
x = self.labels[index]
|
||||
if x.size > 0:
|
||||
# Normalized xywh to pixel xyxy format
|
||||
labels = x.copy()
|
||||
labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
|
||||
labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
|
||||
labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
|
||||
labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
|
||||
|
||||
#labels[:, 5] = ratio[0] * w * x[:, 5] + pad[0] # pad width
|
||||
labels[:, 5] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 5] + pad[0]) + (
|
||||
np.array(x[:, 5] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 6] = np.array(x[:, 6] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 6] + pad[1]) + (
|
||||
np.array(x[:, 6] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 7] = np.array(x[:, 7] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 7] + pad[0]) + (
|
||||
np.array(x[:, 7] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 8] = np.array(x[:, 8] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 8] + pad[1]) + (
|
||||
np.array(x[:, 8] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 9] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 9] + pad[0]) + (
|
||||
np.array(x[:, 9] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 10] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 10] + pad[1]) + (
|
||||
np.array(x[:, 10] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 11] = np.array(x[:, 11] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 11] + pad[0]) + (
|
||||
np.array(x[:, 11] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 12] = np.array(x[:, 12] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 12] + pad[1]) + (
|
||||
np.array(x[:, 12] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 13] = np.array(x[:, 13] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 13] + pad[0]) + (
|
||||
np.array(x[:, 13] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 14] = np.array(x[:, 14] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 14] + pad[1]) + (
|
||||
np.array(x[:, 14] > 0, dtype=np.int32) - 1)
|
||||
|
||||
if self.augment:
|
||||
# Augment imagespace
|
||||
if not mosaic:
|
||||
img, labels = random_perspective(img, labels,
|
||||
degrees=hyp['degrees'],
|
||||
translate=hyp['translate'],
|
||||
scale=hyp['scale'],
|
||||
shear=hyp['shear'],
|
||||
perspective=hyp['perspective'])
|
||||
|
||||
# Augment colorspace
|
||||
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
|
||||
|
||||
# Apply cutouts
|
||||
# if random.random() < 0.9:
|
||||
# labels = cutout(img, labels)
|
||||
|
||||
nL = len(labels) # number of labels
|
||||
if nL:
|
||||
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
|
||||
labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
|
||||
labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
|
||||
|
||||
labels[:, [5, 7, 9, 11, 13]] /= img.shape[1] # normalized landmark x 0-1
|
||||
labels[:, [5, 7, 9, 11, 13]] = np.where(labels[:, [5, 7, 9, 11, 13]] < 0, -1, labels[:, [5, 7, 9, 11, 13]])
|
||||
labels[:, [6, 8, 10, 12, 14]] /= img.shape[0] # normalized landmark y 0-1
|
||||
labels[:, [6, 8, 10, 12, 14]] = np.where(labels[:, [6, 8, 10, 12, 14]] < 0, -1, labels[:, [6, 8, 10, 12, 14]])
|
||||
|
||||
if self.augment:
|
||||
# flip up-down
|
||||
if random.random() < hyp['flipud']:
|
||||
img = np.flipud(img)
|
||||
if nL:
|
||||
labels[:, 2] = 1 - labels[:, 2]
|
||||
|
||||
labels[:, 6] = np.where(labels[:,6] < 0, -1, 1 - labels[:, 6])
|
||||
labels[:, 8] = np.where(labels[:, 8] < 0, -1, 1 - labels[:, 8])
|
||||
labels[:, 10] = np.where(labels[:, 10] < 0, -1, 1 - labels[:, 10])
|
||||
labels[:, 12] = np.where(labels[:, 12] < 0, -1, 1 - labels[:, 12])
|
||||
labels[:, 14] = np.where(labels[:, 14] < 0, -1, 1 - labels[:, 14])
|
||||
|
||||
# flip left-right
|
||||
if random.random() < hyp['fliplr']:
|
||||
img = np.fliplr(img)
|
||||
if nL:
|
||||
labels[:, 1] = 1 - labels[:, 1]
|
||||
|
||||
labels[:, 5] = np.where(labels[:, 5] < 0, -1, 1 - labels[:, 5])
|
||||
labels[:, 7] = np.where(labels[:, 7] < 0, -1, 1 - labels[:, 7])
|
||||
labels[:, 9] = np.where(labels[:, 9] < 0, -1, 1 - labels[:, 9])
|
||||
labels[:, 11] = np.where(labels[:, 11] < 0, -1, 1 - labels[:, 11])
|
||||
labels[:, 13] = np.where(labels[:, 13] < 0, -1, 1 - labels[:, 13])
|
||||
|
||||
#左右镜像的时候,左眼、右眼, 左嘴角、右嘴角无法区分, 应该交换位置,便于网络学习
|
||||
eye_left = np.copy(labels[:, [5, 6]])
|
||||
mouth_left = np.copy(labels[:, [11, 12]])
|
||||
labels[:, [5, 6]] = labels[:, [7, 8]]
|
||||
labels[:, [7, 8]] = eye_left
|
||||
labels[:, [11, 12]] = labels[:, [13, 14]]
|
||||
labels[:, [13, 14]] = mouth_left
|
||||
|
||||
labels_out = torch.zeros((nL, 16))
|
||||
if nL:
|
||||
labels_out[:, 1:] = torch.from_numpy(labels)
|
||||
#showlabels(img, labels[:, 1:5], labels[:, 5:15])
|
||||
|
||||
# Convert
|
||||
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
||||
img = np.ascontiguousarray(img)
|
||||
#print(index, ' --- labels_out: ', labels_out)
|
||||
#if nL:
|
||||
#print( ' : landmarks : ', torch.max(labels_out[:, 5:15]), ' --- ', torch.min(labels_out[:, 5:15]))
|
||||
return torch.from_numpy(img), labels_out, self.img_files[index], shapes
|
||||
|
||||
@staticmethod
|
||||
def collate_fn(batch):
|
||||
img, label, path, shapes = zip(*batch) # transposed
|
||||
for i, l in enumerate(label):
|
||||
l[:, 0] = i # add target image index for build_targets()
|
||||
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
|
||||
|
||||
|
||||
def showlabels(img, boxs, landmarks):
|
||||
for box in boxs:
|
||||
x,y,w,h = box[0] * img.shape[1], box[1] * img.shape[0], box[2] * img.shape[1], box[3] * img.shape[0]
|
||||
#cv2.rectangle(image, (x,y), (x+w,y+h), (0,255,0), 2)
|
||||
cv2.rectangle(img, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2)
|
||||
|
||||
for landmark in landmarks:
|
||||
#cv2.circle(img,(60,60),30,(0,0,255))
|
||||
for i in range(5):
|
||||
cv2.circle(img, (int(landmark[2*i] * img.shape[1]), int(landmark[2*i+1]*img.shape[0])), 3 ,(0,0,255), -1)
|
||||
cv2.imshow('test', img)
|
||||
cv2.waitKey(0)
|
||||
|
||||
|
||||
def load_mosaic_face(self, index):
|
||||
# loads images in a mosaic
|
||||
labels4 = []
|
||||
s = self.img_size
|
||||
yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
|
||||
indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] # 3 additional image indices
|
||||
for i, index in enumerate(indices):
|
||||
# Load image
|
||||
img, _, (h, w) = load_image(self, index)
|
||||
|
||||
# place img in img4
|
||||
if i == 0: # top left
|
||||
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
||||
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
||||
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
||||
elif i == 1: # top right
|
||||
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
||||
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
||||
elif i == 2: # bottom left
|
||||
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
||||
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
||||
elif i == 3: # bottom right
|
||||
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
||||
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
||||
|
||||
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
||||
padw = x1a - x1b
|
||||
padh = y1a - y1b
|
||||
|
||||
# Labels
|
||||
x = self.labels[index]
|
||||
labels = x.copy()
|
||||
if x.size > 0: # Normalized xywh to pixel xyxy format
|
||||
#box, x1,y1,x2,y2
|
||||
labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
|
||||
labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
|
||||
labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
|
||||
labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
|
||||
#10 landmarks
|
||||
|
||||
labels[:, 5] = np.array(x[:, 5] > 0, dtype=np.int32) * (w * x[:, 5] + padw) + (np.array(x[:, 5] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 6] = np.array(x[:, 6] > 0, dtype=np.int32) * (h * x[:, 6] + padh) + (np.array(x[:, 6] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 7] = np.array(x[:, 7] > 0, dtype=np.int32) * (w * x[:, 7] + padw) + (np.array(x[:, 7] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 8] = np.array(x[:, 8] > 0, dtype=np.int32) * (h * x[:, 8] + padh) + (np.array(x[:, 8] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 9] = np.array(x[:, 9] > 0, dtype=np.int32) * (w * x[:, 9] + padw) + (np.array(x[:, 9] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 10] = np.array(x[:, 10] > 0, dtype=np.int32) * (h * x[:, 10] + padh) + (np.array(x[:, 10] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 11] = np.array(x[:, 11] > 0, dtype=np.int32) * (w * x[:, 11] + padw) + (np.array(x[:, 11] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 12] = np.array(x[:, 12] > 0, dtype=np.int32) * (h * x[:, 12] + padh) + (np.array(x[:, 12] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 13] = np.array(x[:, 13] > 0, dtype=np.int32) * (w * x[:, 13] + padw) + (np.array(x[:, 13] > 0, dtype=np.int32) - 1)
|
||||
labels[:, 14] = np.array(x[:, 14] > 0, dtype=np.int32) * (h * x[:, 14] + padh) + (np.array(x[:, 14] > 0, dtype=np.int32) - 1)
|
||||
labels4.append(labels)
|
||||
|
||||
# Concat/clip labels
|
||||
if len(labels4):
|
||||
labels4 = np.concatenate(labels4, 0)
|
||||
np.clip(labels4[:, 1:5], 0, 2 * s, out=labels4[:, 1:5]) # use with random_perspective
|
||||
# img4, labels4 = replicate(img4, labels4) # replicate
|
||||
|
||||
#landmarks
|
||||
labels4[:, 5:] = np.where(labels4[:, 5:] < 0, -1, labels4[:, 5:])
|
||||
labels4[:, 5:] = np.where(labels4[:, 5:] > 2 * s, -1, labels4[:, 5:])
|
||||
|
||||
labels4[:, 5] = np.where(labels4[:, 6] == -1, -1, labels4[:, 5])
|
||||
labels4[:, 6] = np.where(labels4[:, 5] == -1, -1, labels4[:, 6])
|
||||
|
||||
labels4[:, 7] = np.where(labels4[:, 8] == -1, -1, labels4[:, 7])
|
||||
labels4[:, 8] = np.where(labels4[:, 7] == -1, -1, labels4[:, 8])
|
||||
|
||||
labels4[:, 9] = np.where(labels4[:, 10] == -1, -1, labels4[:, 9])
|
||||
labels4[:, 10] = np.where(labels4[:, 9] == -1, -1, labels4[:, 10])
|
||||
|
||||
labels4[:, 11] = np.where(labels4[:, 12] == -1, -1, labels4[:, 11])
|
||||
labels4[:, 12] = np.where(labels4[:, 11] == -1, -1, labels4[:, 12])
|
||||
|
||||
labels4[:, 13] = np.where(labels4[:, 14] == -1, -1, labels4[:, 13])
|
||||
labels4[:, 14] = np.where(labels4[:, 13] == -1, -1, labels4[:, 14])
|
||||
|
||||
# Augment
|
||||
img4, labels4 = random_perspective(img4, labels4,
|
||||
degrees=self.hyp['degrees'],
|
||||
translate=self.hyp['translate'],
|
||||
scale=self.hyp['scale'],
|
||||
shear=self.hyp['shear'],
|
||||
perspective=self.hyp['perspective'],
|
||||
border=self.mosaic_border) # border to remove
|
||||
return img4, labels4
|
||||
|
||||
|
||||
# Ancillary functions --------------------------------------------------------------------------------------------------
|
||||
def load_image(self, index):
|
||||
# loads 1 image from dataset, returns img, original hw, resized hw
|
||||
img = self.imgs[index]
|
||||
if img is None: # not cached
|
||||
path = self.img_files[index]
|
||||
img = cv2.imread(path) # BGR
|
||||
assert img is not None, 'Image Not Found ' + path
|
||||
h0, w0 = img.shape[:2] # orig hw
|
||||
r = self.img_size / max(h0, w0) # resize image to img_size
|
||||
if r != 1: # always resize down, only resize up if training with augmentation
|
||||
interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
|
||||
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
|
||||
return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
|
||||
else:
|
||||
return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
|
||||
|
||||
|
||||
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
|
||||
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
||||
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
|
||||
dtype = img.dtype # uint8
|
||||
|
||||
x = np.arange(0, 256, dtype=np.int16)
|
||||
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
||||
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
||||
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
||||
|
||||
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
|
||||
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
|
||||
|
||||
# Histogram equalization
|
||||
# if random.random() < 0.2:
|
||||
# for i in range(3):
|
||||
# img[:, :, i] = cv2.equalizeHist(img[:, :, i])
|
||||
|
||||
def replicate(img, labels):
|
||||
# Replicate labels
|
||||
h, w = img.shape[:2]
|
||||
boxes = labels[:, 1:].astype(int)
|
||||
x1, y1, x2, y2 = boxes.T
|
||||
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
|
||||
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
|
||||
x1b, y1b, x2b, y2b = boxes[i]
|
||||
bh, bw = y2b - y1b, x2b - x1b
|
||||
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
|
||||
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
||||
img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
||||
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
||||
|
||||
return img, labels
|
||||
|
||||
|
||||
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
|
||||
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
|
||||
shape = img.shape[:2] # current shape [height, width]
|
||||
if isinstance(new_shape, int):
|
||||
new_shape = (new_shape, new_shape)
|
||||
|
||||
# Scale ratio (new / old)
|
||||
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||||
if not scaleup: # only scale down, do not scale up (for better test mAP)
|
||||
r = min(r, 1.0)
|
||||
|
||||
# Compute padding
|
||||
ratio = r, r # width, height ratios
|
||||
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
||||
if auto: # minimum rectangle
|
||||
dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
|
||||
elif scaleFill: # stretch
|
||||
dw, dh = 0.0, 0.0
|
||||
new_unpad = (new_shape[1], new_shape[0])
|
||||
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
||||
|
||||
dw /= 2 # divide padding into 2 sides
|
||||
dh /= 2
|
||||
|
||||
if shape[::-1] != new_unpad: # resize
|
||||
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||||
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||||
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
||||
return img, ratio, (dw, dh)
|
||||
|
||||
|
||||
def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
|
||||
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
|
||||
# targets = [cls, xyxy]
|
||||
|
||||
height = img.shape[0] + border[0] * 2 # shape(h,w,c)
|
||||
width = img.shape[1] + border[1] * 2
|
||||
|
||||
# Center
|
||||
C = np.eye(3)
|
||||
C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
|
||||
C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
|
||||
|
||||
# Perspective
|
||||
P = np.eye(3)
|
||||
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
||||
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
||||
|
||||
# Rotation and Scale
|
||||
R = np.eye(3)
|
||||
a = random.uniform(-degrees, degrees)
|
||||
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
||||
s = random.uniform(1 - scale, 1 + scale)
|
||||
# s = 2 ** random.uniform(-scale, scale)
|
||||
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
||||
|
||||
# Shear
|
||||
S = np.eye(3)
|
||||
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
||||
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
||||
|
||||
# Translation
|
||||
T = np.eye(3)
|
||||
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
||||
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
||||
|
||||
# Combined rotation matrix
|
||||
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
||||
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
||||
if perspective:
|
||||
img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
|
||||
else: # affine
|
||||
img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
||||
|
||||
# Visualize
|
||||
# import matplotlib.pyplot as plt
|
||||
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
||||
# ax[0].imshow(img[:, :, ::-1]) # base
|
||||
# ax[1].imshow(img2[:, :, ::-1]) # warped
|
||||
|
||||
# Transform label coordinates
|
||||
n = len(targets)
|
||||
if n:
|
||||
# warp points
|
||||
#xy = np.ones((n * 4, 3))
|
||||
xy = np.ones((n * 9, 3))
|
||||
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]].reshape(n * 9, 2) # x1y1, x2y2, x1y2, x2y1
|
||||
xy = xy @ M.T # transform
|
||||
if perspective:
|
||||
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 18) # rescale
|
||||
else: # affine
|
||||
xy = xy[:, :2].reshape(n, 18)
|
||||
|
||||
# create new boxes
|
||||
x = xy[:, [0, 2, 4, 6]]
|
||||
y = xy[:, [1, 3, 5, 7]]
|
||||
|
||||
landmarks = xy[:, [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]]
|
||||
mask = np.array(targets[:, 5:] > 0, dtype=np.int32)
|
||||
landmarks = landmarks * mask
|
||||
landmarks = landmarks + mask - 1
|
||||
|
||||
landmarks = np.where(landmarks < 0, -1, landmarks)
|
||||
landmarks[:, [0, 2, 4, 6, 8]] = np.where(landmarks[:, [0, 2, 4, 6, 8]] > width, -1, landmarks[:, [0, 2, 4, 6, 8]])
|
||||
landmarks[:, [1, 3, 5, 7, 9]] = np.where(landmarks[:, [1, 3, 5, 7, 9]] > height, -1,landmarks[:, [1, 3, 5, 7, 9]])
|
||||
|
||||
landmarks[:, 0] = np.where(landmarks[:, 1] == -1, -1, landmarks[:, 0])
|
||||
landmarks[:, 1] = np.where(landmarks[:, 0] == -1, -1, landmarks[:, 1])
|
||||
|
||||
landmarks[:, 2] = np.where(landmarks[:, 3] == -1, -1, landmarks[:, 2])
|
||||
landmarks[:, 3] = np.where(landmarks[:, 2] == -1, -1, landmarks[:, 3])
|
||||
|
||||
landmarks[:, 4] = np.where(landmarks[:, 5] == -1, -1, landmarks[:, 4])
|
||||
landmarks[:, 5] = np.where(landmarks[:, 4] == -1, -1, landmarks[:, 5])
|
||||
|
||||
landmarks[:, 6] = np.where(landmarks[:, 7] == -1, -1, landmarks[:, 6])
|
||||
landmarks[:, 7] = np.where(landmarks[:, 6] == -1, -1, landmarks[:, 7])
|
||||
|
||||
landmarks[:, 8] = np.where(landmarks[:, 9] == -1, -1, landmarks[:, 8])
|
||||
landmarks[:, 9] = np.where(landmarks[:, 8] == -1, -1, landmarks[:, 9])
|
||||
|
||||
targets[:,5:] = landmarks
|
||||
|
||||
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
||||
|
||||
# # apply angle-based reduction of bounding boxes
|
||||
# radians = a * math.pi / 180
|
||||
# reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
|
||||
# x = (xy[:, 2] + xy[:, 0]) / 2
|
||||
# y = (xy[:, 3] + xy[:, 1]) / 2
|
||||
# w = (xy[:, 2] - xy[:, 0]) * reduction
|
||||
# h = (xy[:, 3] - xy[:, 1]) * reduction
|
||||
# xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
|
||||
|
||||
# clip boxes
|
||||
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
|
||||
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
|
||||
|
||||
# filter candidates
|
||||
i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
|
||||
targets = targets[i]
|
||||
targets[:, 1:5] = xy[i]
|
||||
|
||||
return img, targets
|
||||
|
||||
|
||||
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1): # box1(4,n), box2(4,n)
|
||||
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
||||
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
||||
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
||||
ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
|
||||
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates
|
||||
|
||||
|
||||
def cutout(image, labels):
|
||||
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
|
||||
h, w = image.shape[:2]
|
||||
|
||||
def bbox_ioa(box1, box2):
|
||||
# Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
|
||||
box2 = box2.transpose()
|
||||
|
||||
# Get the coordinates of bounding boxes
|
||||
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
||||
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
||||
|
||||
# Intersection area
|
||||
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
||||
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
|
||||
|
||||
# box2 area
|
||||
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
|
||||
|
||||
# Intersection over box2 area
|
||||
return inter_area / box2_area
|
||||
|
||||
# create random masks
|
||||
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
||||
for s in scales:
|
||||
mask_h = random.randint(1, int(h * s))
|
||||
mask_w = random.randint(1, int(w * s))
|
||||
|
||||
# box
|
||||
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
||||
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
||||
xmax = min(w, xmin + mask_w)
|
||||
ymax = min(h, ymin + mask_h)
|
||||
|
||||
# apply random color mask
|
||||
image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
||||
|
||||
# return unobscured labels
|
||||
if len(labels) and s > 0.03:
|
||||
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
||||
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
||||
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
||||
|
||||
return labels
|
||||
|
||||
|
||||
def create_folder(path='./new'):
|
||||
# Create folder
|
||||
if os.path.exists(path):
|
||||
shutil.rmtree(path) # delete output folder
|
||||
os.makedirs(path) # make new output folder
|
||||
|
||||
|
||||
def flatten_recursive(path='../coco128'):
|
||||
# Flatten a recursive directory by bringing all files to top level
|
||||
new_path = Path(path + '_flat')
|
||||
create_folder(new_path)
|
||||
for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
|
||||
shutil.copyfile(file, new_path / Path(file).name)
|
||||
|
||||
|
||||
def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128')
|
||||
# Convert detection dataset into classification dataset, with one directory per class
|
||||
|
||||
path = Path(path) # images dir
|
||||
shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
|
||||
files = list(path.rglob('*.*'))
|
||||
n = len(files) # number of files
|
||||
for im_file in tqdm(files, total=n):
|
||||
if im_file.suffix[1:] in img_formats:
|
||||
# image
|
||||
im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
|
||||
h, w = im.shape[:2]
|
||||
|
||||
# labels
|
||||
lb_file = Path(img2label_paths([str(im_file)])[0])
|
||||
if Path(lb_file).exists():
|
||||
with open(lb_file, 'r') as f:
|
||||
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
|
||||
|
||||
for j, x in enumerate(lb):
|
||||
c = int(x[0]) # class
|
||||
f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
|
||||
if not f.parent.is_dir():
|
||||
f.parent.mkdir(parents=True)
|
||||
|
||||
b = x[1:] * [w, h, w, h] # box
|
||||
# b[2:] = b[2:].max() # rectangle to square
|
||||
b[2:] = b[2:] * 1.2 + 3 # pad
|
||||
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
|
||||
|
||||
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
|
||||
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
|
||||
assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
|
||||
|
||||
|
||||
def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128')
|
||||
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
|
||||
# Arguments
|
||||
path: Path to images directory
|
||||
weights: Train, val, test weights (list)
|
||||
"""
|
||||
path = Path(path) # images dir
|
||||
files = list(path.rglob('*.*'))
|
||||
n = len(files) # number of files
|
||||
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
|
||||
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
|
||||
[(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
|
||||
for i, img in tqdm(zip(indices, files), total=n):
|
||||
if img.suffix[1:] in img_formats:
|
||||
with open(path / txt[i], 'a') as f:
|
||||
f.write(str(img) + '\n') # add image to txt file
|
||||
@ -1,646 +0,0 @@
|
||||
# General utils
|
||||
|
||||
import glob
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import re
|
||||
import subprocess
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchvision
|
||||
import yaml
|
||||
|
||||
from utils.google_utils import gsutil_getsize
|
||||
from utils.metrics import fitness
|
||||
from utils.torch_utils import init_torch_seeds
|
||||
|
||||
# Settings
|
||||
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
||||
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
|
||||
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
|
||||
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
|
||||
|
||||
|
||||
def set_logging(rank=-1):
|
||||
logging.basicConfig(
|
||||
format="%(message)s",
|
||||
level=logging.INFO if rank in [-1, 0] else logging.WARN)
|
||||
|
||||
|
||||
def init_seeds(seed=0):
|
||||
# Initialize random number generator (RNG) seeds
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
init_torch_seeds(seed)
|
||||
|
||||
|
||||
def get_latest_run(search_dir='.'):
|
||||
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
|
||||
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
|
||||
return max(last_list, key=os.path.getctime) if last_list else ''
|
||||
|
||||
|
||||
def check_online():
|
||||
# Check internet connectivity
|
||||
import socket
|
||||
try:
|
||||
socket.create_connection(("1.1.1.1", 53)) # check host accesability
|
||||
return True
|
||||
except OSError:
|
||||
return False
|
||||
|
||||
|
||||
def check_git_status():
|
||||
# Recommend 'git pull' if code is out of date
|
||||
print(colorstr('github: '), end='')
|
||||
try:
|
||||
assert Path('.git').exists(), 'skipping check (not a git repository)'
|
||||
assert not Path('/workspace').exists(), 'skipping check (Docker image)' # not Path('/.dockerenv').exists()
|
||||
assert check_online(), 'skipping check (offline)'
|
||||
|
||||
cmd = 'git fetch && git config --get remote.origin.url' # github repo url
|
||||
url = subprocess.check_output(cmd, shell=True).decode()[:-1]
|
||||
cmd = 'git rev-list $(git rev-parse --abbrev-ref HEAD)..origin/master --count' # commits behind
|
||||
n = int(subprocess.check_output(cmd, shell=True))
|
||||
if n > 0:
|
||||
print(f"⚠️ WARNING: code is out of date by {n} {'commits' if n > 1 else 'commmit'}. "
|
||||
f"Use 'git pull' to update or 'git clone {url}' to download latest.")
|
||||
else:
|
||||
print(f'up to date with {url} ✅')
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
|
||||
def check_requirements(file='requirements.txt'):
|
||||
# Check installed dependencies meet requirements
|
||||
import pkg_resources
|
||||
requirements = pkg_resources.parse_requirements(Path(file).open())
|
||||
requirements = [x.name + ''.join(*x.specs) if len(x.specs) else x.name for x in requirements]
|
||||
pkg_resources.require(requirements) # DistributionNotFound or VersionConflict exception if requirements not met
|
||||
|
||||
|
||||
def check_img_size(img_size, s=32):
|
||||
# Verify img_size is a multiple of stride s
|
||||
new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
|
||||
if new_size != img_size:
|
||||
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
|
||||
return new_size
|
||||
|
||||
|
||||
def check_file(file):
|
||||
# Search for file if not found
|
||||
if os.path.isfile(file) or file == '':
|
||||
return file
|
||||
else:
|
||||
files = glob.glob('./**/' + file, recursive=True) # find file
|
||||
assert len(files), 'File Not Found: %s' % file # assert file was found
|
||||
assert len(files) == 1, "Multiple files match '%s', specify exact path: %s" % (file, files) # assert unique
|
||||
return files[0] # return file
|
||||
|
||||
|
||||
def check_dataset(dict):
|
||||
# Download dataset if not found locally
|
||||
val, s = dict.get('val'), dict.get('download')
|
||||
if val and len(val):
|
||||
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
|
||||
if not all(x.exists() for x in val):
|
||||
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
|
||||
if s and len(s): # download script
|
||||
print('Downloading %s ...' % s)
|
||||
if s.startswith('http') and s.endswith('.zip'): # URL
|
||||
f = Path(s).name # filename
|
||||
torch.hub.download_url_to_file(s, f)
|
||||
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
|
||||
else: # bash script
|
||||
r = os.system(s)
|
||||
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
|
||||
else:
|
||||
raise Exception('Dataset not found.')
|
||||
|
||||
|
||||
def make_divisible(x, divisor):
|
||||
# Returns x evenly divisible by divisor
|
||||
return math.ceil(x / divisor) * divisor
|
||||
|
||||
|
||||
def clean_str(s):
|
||||
# Cleans a string by replacing special characters with underscore _
|
||||
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
|
||||
|
||||
|
||||
def one_cycle(y1=0.0, y2=1.0, steps=100):
|
||||
# lambda function for sinusoidal ramp from y1 to y2
|
||||
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
|
||||
|
||||
|
||||
def colorstr(*input):
|
||||
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
|
||||
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
|
||||
colors = {'black': '\033[30m', # basic colors
|
||||
'red': '\033[31m',
|
||||
'green': '\033[32m',
|
||||
'yellow': '\033[33m',
|
||||
'blue': '\033[34m',
|
||||
'magenta': '\033[35m',
|
||||
'cyan': '\033[36m',
|
||||
'white': '\033[37m',
|
||||
'bright_black': '\033[90m', # bright colors
|
||||
'bright_red': '\033[91m',
|
||||
'bright_green': '\033[92m',
|
||||
'bright_yellow': '\033[93m',
|
||||
'bright_blue': '\033[94m',
|
||||
'bright_magenta': '\033[95m',
|
||||
'bright_cyan': '\033[96m',
|
||||
'bright_white': '\033[97m',
|
||||
'end': '\033[0m', # misc
|
||||
'bold': '\033[1m',
|
||||
'underline': '\033[4m'}
|
||||
return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
|
||||
|
||||
|
||||
def labels_to_class_weights(labels, nc=80):
|
||||
# Get class weights (inverse frequency) from training labels
|
||||
if labels[0] is None: # no labels loaded
|
||||
return torch.Tensor()
|
||||
|
||||
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
|
||||
classes = labels[:, 0].astype(np.int) # labels = [class xywh]
|
||||
weights = np.bincount(classes, minlength=nc) # occurrences per class
|
||||
|
||||
# Prepend gridpoint count (for uCE training)
|
||||
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
|
||||
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
|
||||
|
||||
weights[weights == 0] = 1 # replace empty bins with 1
|
||||
weights = 1 / weights # number of targets per class
|
||||
weights /= weights.sum() # normalize
|
||||
return torch.from_numpy(weights)
|
||||
|
||||
|
||||
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
|
||||
# Produces image weights based on class_weights and image contents
|
||||
class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
|
||||
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
|
||||
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
|
||||
return image_weights
|
||||
|
||||
|
||||
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
|
||||
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
||||
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
|
||||
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
|
||||
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
|
||||
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
|
||||
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
|
||||
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
||||
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
|
||||
return x
|
||||
|
||||
|
||||
def xyxy2xywh(x):
|
||||
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
||||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
||||
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
||||
y[:, 2] = x[:, 2] - x[:, 0] # width
|
||||
y[:, 3] = x[:, 3] - x[:, 1] # height
|
||||
return y
|
||||
|
||||
|
||||
def xywh2xyxy(x):
|
||||
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
||||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
||||
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
||||
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
||||
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
||||
return y
|
||||
|
||||
|
||||
def xywhn2xyxy(x, w=640, h=640, padw=32, padh=32):
|
||||
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
||||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
|
||||
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
|
||||
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
|
||||
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
|
||||
return y
|
||||
|
||||
|
||||
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
||||
# Rescale coords (xyxy) from img1_shape to img0_shape
|
||||
if ratio_pad is None: # calculate from img0_shape
|
||||
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
||||
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
||||
else:
|
||||
gain = ratio_pad[0][0]
|
||||
pad = ratio_pad[1]
|
||||
|
||||
coords[:, [0, 2]] -= pad[0] # x padding
|
||||
coords[:, [1, 3]] -= pad[1] # y padding
|
||||
coords[:, :4] /= gain
|
||||
clip_coords(coords, img0_shape)
|
||||
return coords
|
||||
|
||||
|
||||
def clip_coords(boxes, img_shape):
|
||||
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
||||
boxes[:, 0].clamp_(0, img_shape[1]) # x1
|
||||
boxes[:, 1].clamp_(0, img_shape[0]) # y1
|
||||
boxes[:, 2].clamp_(0, img_shape[1]) # x2
|
||||
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
||||
|
||||
|
||||
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-9):
|
||||
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
|
||||
box2 = box2.T
|
||||
|
||||
# Get the coordinates of bounding boxes
|
||||
if x1y1x2y2: # x1, y1, x2, y2 = box1
|
||||
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
||||
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
||||
else: # transform from xywh to xyxy
|
||||
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
|
||||
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
|
||||
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
|
||||
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
|
||||
|
||||
# Intersection area
|
||||
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
||||
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
||||
|
||||
# Union Area
|
||||
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
||||
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
||||
union = w1 * h1 + w2 * h2 - inter + eps
|
||||
|
||||
iou = inter / union
|
||||
if GIoU or DIoU or CIoU:
|
||||
# convex (smallest enclosing box) width
|
||||
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)
|
||||
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
||||
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
||||
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
||||
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
|
||||
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
|
||||
if DIoU:
|
||||
return iou - rho2 / c2 # DIoU
|
||||
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
||||
v = (4 / math.pi ** 2) * \
|
||||
torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
|
||||
with torch.no_grad():
|
||||
alpha = v / ((1 + eps) - iou + v)
|
||||
return iou - (rho2 / c2 + v * alpha) # CIoU
|
||||
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
||||
c_area = cw * ch + eps # convex area
|
||||
return iou - (c_area - union) / c_area # GIoU
|
||||
else:
|
||||
return iou # IoU
|
||||
|
||||
|
||||
def box_iou(box1, box2):
|
||||
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
||||
"""
|
||||
Return intersection-over-union (Jaccard index) of boxes.
|
||||
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||
Arguments:
|
||||
box1 (Tensor[N, 4])
|
||||
box2 (Tensor[M, 4])
|
||||
Returns:
|
||||
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
||||
IoU values for every element in boxes1 and boxes2
|
||||
"""
|
||||
|
||||
def box_area(box):
|
||||
# box = 4xn
|
||||
return (box[2] - box[0]) * (box[3] - box[1])
|
||||
|
||||
area1 = box_area(box1.T)
|
||||
area2 = box_area(box2.T)
|
||||
|
||||
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
||||
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) -
|
||||
torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
||||
# iou = inter / (area1 + area2 - inter)
|
||||
return inter / (area1[:, None] + area2 - inter)
|
||||
|
||||
|
||||
def wh_iou(wh1, wh2):
|
||||
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
|
||||
wh1 = wh1[:, None] # [N,1,2]
|
||||
wh2 = wh2[None] # [1,M,2]
|
||||
inter = torch.min(wh1, wh2).prod(2) # [N,M]
|
||||
# iou = inter / (area1 + area2 - inter)
|
||||
return inter / (wh1.prod(2) + wh2.prod(2) - inter)
|
||||
|
||||
def jaccard_diou(box_a, box_b, iscrowd:bool=False):
|
||||
use_batch = True
|
||||
if box_a.dim() == 2:
|
||||
use_batch = False
|
||||
box_a = box_a[None, ...]
|
||||
box_b = box_b[None, ...]
|
||||
|
||||
inter = intersect(box_a, box_b)
|
||||
area_a = ((box_a[:, :, 2]-box_a[:, :, 0]) *
|
||||
(box_a[:, :, 3]-box_a[:, :, 1])).unsqueeze(2).expand_as(inter) # [A,B]
|
||||
area_b = ((box_b[:, :, 2]-box_b[:, :, 0]) *
|
||||
(box_b[:, :, 3]-box_b[:, :, 1])).unsqueeze(1).expand_as(inter) # [A,B]
|
||||
union = area_a + area_b - inter
|
||||
x1 = ((box_a[:, :, 2]+box_a[:, :, 0]) / 2).unsqueeze(2).expand_as(inter)
|
||||
y1 = ((box_a[:, :, 3]+box_a[:, :, 1]) / 2).unsqueeze(2).expand_as(inter)
|
||||
x2 = ((box_b[:, :, 2]+box_b[:, :, 0]) / 2).unsqueeze(1).expand_as(inter)
|
||||
y2 = ((box_b[:, :, 3]+box_b[:, :, 1]) / 2).unsqueeze(1).expand_as(inter)
|
||||
|
||||
t1 = box_a[:, :, 1].unsqueeze(2).expand_as(inter)
|
||||
b1 = box_a[:, :, 3].unsqueeze(2).expand_as(inter)
|
||||
l1 = box_a[:, :, 0].unsqueeze(2).expand_as(inter)
|
||||
r1 = box_a[:, :, 2].unsqueeze(2).expand_as(inter)
|
||||
|
||||
t2 = box_b[:, :, 1].unsqueeze(1).expand_as(inter)
|
||||
b2 = box_b[:, :, 3].unsqueeze(1).expand_as(inter)
|
||||
l2 = box_b[:, :, 0].unsqueeze(1).expand_as(inter)
|
||||
r2 = box_b[:, :, 2].unsqueeze(1).expand_as(inter)
|
||||
|
||||
cr = torch.max(r1, r2)
|
||||
cl = torch.min(l1, l2)
|
||||
ct = torch.min(t1, t2)
|
||||
cb = torch.max(b1, b2)
|
||||
D = (((x2 - x1)**2 + (y2 - y1)**2) / ((cr-cl)**2 + (cb-ct)**2 + 1e-7))
|
||||
out = inter / area_a if iscrowd else inter / (union + 1e-7) - D ** 0.7
|
||||
return out if use_batch else out.squeeze(0)
|
||||
|
||||
|
||||
def non_max_suppression_face(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
|
||||
"""Performs Non-Maximum Suppression (NMS) on inference results
|
||||
Returns:
|
||||
detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
|
||||
"""
|
||||
|
||||
nc = prediction.shape[2] - 15 # number of classes
|
||||
xc = prediction[..., 4] > conf_thres # candidates
|
||||
|
||||
# Settings
|
||||
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
||||
time_limit = 10.0 # seconds to quit after
|
||||
redundant = True # require redundant detections
|
||||
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
|
||||
merge = False # use merge-NMS
|
||||
|
||||
t = time.time()
|
||||
output = [torch.zeros((0, 16), device=prediction.device)] * prediction.shape[0]
|
||||
for xi, x in enumerate(prediction): # image index, image inference
|
||||
# Apply constraints
|
||||
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
||||
x = x[xc[xi]] # confidence
|
||||
|
||||
# Cat apriori labels if autolabelling
|
||||
if labels and len(labels[xi]):
|
||||
l = labels[xi]
|
||||
v = torch.zeros((len(l), nc + 15), device=x.device)
|
||||
v[:, :4] = l[:, 1:5] # box
|
||||
v[:, 4] = 1.0 # conf
|
||||
v[range(len(l)), l[:, 0].long() + 15] = 1.0 # cls
|
||||
x = torch.cat((x, v), 0)
|
||||
|
||||
# If none remain process next image
|
||||
if not x.shape[0]:
|
||||
continue
|
||||
|
||||
# Compute conf
|
||||
x[:, 15:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
||||
|
||||
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
||||
box = xywh2xyxy(x[:, :4])
|
||||
|
||||
# Detections matrix nx6 (xyxy, conf, landmarks, cls)
|
||||
if multi_label:
|
||||
i, j = (x[:, 15:] > conf_thres).nonzero(as_tuple=False).T
|
||||
x = torch.cat((box[i], x[i, j + 15, None], x[:, 5:15] ,j[:, None].float()), 1)
|
||||
else: # best class only
|
||||
conf, j = x[:, 15:].max(1, keepdim=True)
|
||||
x = torch.cat((box, conf, x[:, 5:15], j.float()), 1)[conf.view(-1) > conf_thres]
|
||||
|
||||
# Filter by class
|
||||
if classes is not None:
|
||||
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
||||
|
||||
# If none remain process next image
|
||||
n = x.shape[0] # number of boxes
|
||||
if not n:
|
||||
continue
|
||||
|
||||
# Batched NMS
|
||||
c = x[:, 15:16] * (0 if agnostic else max_wh) # classes
|
||||
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
||||
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
||||
#if i.shape[0] > max_det: # limit detections
|
||||
# i = i[:max_det]
|
||||
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
||||
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
||||
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
||||
weights = iou * scores[None] # box weights
|
||||
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
||||
if redundant:
|
||||
i = i[iou.sum(1) > 1] # require redundancy
|
||||
|
||||
output[xi] = x[i]
|
||||
if (time.time() - t) > time_limit:
|
||||
break # time limit exceeded
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
|
||||
"""Performs Non-Maximum Suppression (NMS) on inference results
|
||||
|
||||
Returns:
|
||||
detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
|
||||
"""
|
||||
|
||||
nc = prediction.shape[2] - 5 # number of classes
|
||||
xc = prediction[..., 4] > conf_thres # candidates
|
||||
|
||||
# Settings
|
||||
# (pixels) minimum and maximum box width and height
|
||||
min_wh, max_wh = 2, 4096
|
||||
#max_det = 300 # maximum number of detections per image
|
||||
#max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
||||
time_limit = 10.0 # seconds to quit after
|
||||
redundant = True # require redundant detections
|
||||
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
|
||||
merge = False # use merge-NMS
|
||||
|
||||
t = time.time()
|
||||
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
|
||||
for xi, x in enumerate(prediction): # image index, image inference
|
||||
# Apply constraints
|
||||
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
||||
x = x[xc[xi]] # confidence
|
||||
|
||||
# Cat apriori labels if autolabelling
|
||||
if labels and len(labels[xi]):
|
||||
l = labels[xi]
|
||||
v = torch.zeros((len(l), nc + 5), device=x.device)
|
||||
v[:, :4] = l[:, 1:5] # box
|
||||
v[:, 4] = 1.0 # conf
|
||||
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
|
||||
x = torch.cat((x, v), 0)
|
||||
|
||||
# If none remain process next image
|
||||
if not x.shape[0]:
|
||||
continue
|
||||
|
||||
# Compute conf
|
||||
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
||||
|
||||
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
||||
box = xywh2xyxy(x[:, :4])
|
||||
|
||||
# Detections matrix nx6 (xyxy, conf, cls)
|
||||
if multi_label:
|
||||
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
|
||||
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
|
||||
else: # best class only
|
||||
conf, j = x[:, 5:].max(1, keepdim=True)
|
||||
x = torch.cat((box, conf, j.float()), 1)[
|
||||
conf.view(-1) > conf_thres]
|
||||
|
||||
# Filter by class
|
||||
if classes is not None:
|
||||
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
||||
|
||||
# Apply finite constraint
|
||||
# if not torch.isfinite(x).all():
|
||||
# x = x[torch.isfinite(x).all(1)]
|
||||
|
||||
# Check shape
|
||||
n = x.shape[0] # number of boxes
|
||||
if not n: # no boxes
|
||||
continue
|
||||
#elif n > max_nms: # excess boxes
|
||||
# x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
|
||||
x = x[x[:, 4].argsort(descending=True)] # sort by confidence
|
||||
|
||||
# Batched NMS
|
||||
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
||||
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
||||
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
||||
#if i.shape[0] > max_det: # limit detections
|
||||
# i = i[:max_det]
|
||||
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
||||
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
||||
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
||||
weights = iou * scores[None] # box weights
|
||||
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
||||
if redundant:
|
||||
i = i[iou.sum(1) > 1] # require redundancy
|
||||
|
||||
output[xi] = x[i]
|
||||
if (time.time() - t) > time_limit:
|
||||
print(f'WARNING: NMS time limit {time_limit}s exceeded')
|
||||
break # time limit exceeded
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def strip_optimizer(f='weights/best.pt', s=''): # from utils.general import *; strip_optimizer()
|
||||
# Strip optimizer from 'f' to finalize training, optionally save as 's'
|
||||
x = torch.load(f, map_location=torch.device('cpu'))
|
||||
for key in 'optimizer', 'training_results', 'wandb_id':
|
||||
x[key] = None
|
||||
x['epoch'] = -1
|
||||
x['model'].half() # to FP16
|
||||
for p in x['model'].parameters():
|
||||
p.requires_grad = False
|
||||
torch.save(x, s or f)
|
||||
mb = os.path.getsize(s or f) / 1E6 # filesize
|
||||
print('Optimizer stripped from %s,%s %.1fMB' % (f, (' saved as %s,' % s) if s else '', mb))
|
||||
|
||||
|
||||
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
|
||||
# Print mutation results to evolve.txt (for use with train.py --evolve)
|
||||
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
|
||||
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
|
||||
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
|
||||
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
|
||||
|
||||
if bucket:
|
||||
url = 'gs://%s/evolve.txt' % bucket
|
||||
if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
|
||||
os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
|
||||
|
||||
with open('evolve.txt', 'a') as f: # append result
|
||||
f.write(c + b + '\n')
|
||||
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
|
||||
x = x[np.argsort(-fitness(x))] # sort
|
||||
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
|
||||
|
||||
# Save yaml
|
||||
for i, k in enumerate(hyp.keys()):
|
||||
hyp[k] = float(x[0, i + 7])
|
||||
with open(yaml_file, 'w') as f:
|
||||
results = tuple(x[0, :7])
|
||||
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
|
||||
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
|
||||
yaml.dump(hyp, f, sort_keys=False)
|
||||
|
||||
if bucket:
|
||||
os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
|
||||
|
||||
|
||||
def apply_classifier(x, model, img, im0):
|
||||
# applies a second stage classifier to yolo outputs
|
||||
im0 = [im0] if isinstance(im0, np.ndarray) else im0
|
||||
for i, d in enumerate(x): # per image
|
||||
if d is not None and len(d):
|
||||
d = d.clone()
|
||||
|
||||
# Reshape and pad cutouts
|
||||
b = xyxy2xywh(d[:, :4]) # boxes
|
||||
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
|
||||
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
|
||||
d[:, :4] = xywh2xyxy(b).long()
|
||||
|
||||
# Rescale boxes from img_size to im0 size
|
||||
scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
|
||||
|
||||
# Classes
|
||||
pred_cls1 = d[:, 5].long()
|
||||
ims = []
|
||||
for j, a in enumerate(d): # per item
|
||||
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
|
||||
im = cv2.resize(cutout, (224, 224)) # BGR
|
||||
# cv2.imwrite('test%i.jpg' % j, cutout)
|
||||
|
||||
# BGR to RGB, to 3x416x416
|
||||
im = im[:, :, ::-1].transpose(2, 0, 1)
|
||||
im = np.ascontiguousarray(
|
||||
im, dtype=np.float32) # uint8 to float32
|
||||
im /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||||
ims.append(im)
|
||||
|
||||
pred_cls2 = model(torch.Tensor(ims).to(d.device)
|
||||
).argmax(1) # classifier prediction
|
||||
# retain matching class detections
|
||||
x[i] = x[i][pred_cls1 == pred_cls2]
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def increment_path(path, exist_ok=True, sep=''):
|
||||
# Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
|
||||
path = Path(path) # os-agnostic
|
||||
if (path.exists() and exist_ok) or (not path.exists()):
|
||||
return str(path)
|
||||
else:
|
||||
dirs = glob.glob(f"{path}{sep}*") # similar paths
|
||||
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
|
||||
i = [int(m.groups()[0]) for m in matches if m] # indices
|
||||
n = max(i) + 1 if i else 2 # increment number
|
||||
return f"{path}{sep}{n}" # update path
|
||||
@ -1,122 +0,0 @@
|
||||
# Google utils: https://cloud.google.com/storage/docs/reference/libraries
|
||||
|
||||
import os
|
||||
import platform
|
||||
import subprocess
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import requests
|
||||
import torch
|
||||
|
||||
|
||||
def gsutil_getsize(url=''):
|
||||
# gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
|
||||
s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
|
||||
return eval(s.split(' ')[0]) if len(s) else 0 # bytes
|
||||
|
||||
|
||||
def attempt_download(file, repo='ultralytics/yolov5'):
|
||||
# Attempt file download if does not exist
|
||||
file = Path(str(file).strip().replace("'", '').lower())
|
||||
|
||||
if not file.exists():
|
||||
try:
|
||||
response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
|
||||
assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...]
|
||||
tag = response['tag_name'] # i.e. 'v1.0'
|
||||
except: # fallback plan
|
||||
assets = ['yolov5.pt', 'yolov5.pt', 'yolov5l.pt', 'yolov5x.pt']
|
||||
tag = subprocess.check_output('git tag', shell=True).decode('utf-8').split('\n')[-2]
|
||||
|
||||
name = file.name
|
||||
if name in assets:
|
||||
msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/'
|
||||
redundant = False # second download option
|
||||
try: # GitHub
|
||||
url = f'https://github.com/{repo}/releases/download/{tag}/{name}'
|
||||
print(f'Downloading {url} to {file}...')
|
||||
torch.hub.download_url_to_file(url, file)
|
||||
assert file.exists() and file.stat().st_size > 1E6 # check
|
||||
except Exception as e: # GCP
|
||||
print(f'Download error: {e}')
|
||||
assert redundant, 'No secondary mirror'
|
||||
url = f'https://storage.googleapis.com/{repo}/ckpt/{name}'
|
||||
print(f'Downloading {url} to {file}...')
|
||||
os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights)
|
||||
finally:
|
||||
if not file.exists() or file.stat().st_size < 1E6: # check
|
||||
file.unlink(missing_ok=True) # remove partial downloads
|
||||
print(f'ERROR: Download failure: {msg}')
|
||||
print('')
|
||||
return
|
||||
|
||||
|
||||
def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
|
||||
# Downloads a file from Google Drive. from yolov5.utils.google_utils import *; gdrive_download()
|
||||
t = time.time()
|
||||
file = Path(file)
|
||||
cookie = Path('cookie') # gdrive cookie
|
||||
print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
|
||||
file.unlink(missing_ok=True) # remove existing file
|
||||
cookie.unlink(missing_ok=True) # remove existing cookie
|
||||
|
||||
# Attempt file download
|
||||
out = "NUL" if platform.system() == "Windows" else "/dev/null"
|
||||
os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
|
||||
if os.path.exists('cookie'): # large file
|
||||
s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
|
||||
else: # small file
|
||||
s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
|
||||
r = os.system(s) # execute, capture return
|
||||
cookie.unlink(missing_ok=True) # remove existing cookie
|
||||
|
||||
# Error check
|
||||
if r != 0:
|
||||
file.unlink(missing_ok=True) # remove partial
|
||||
print('Download error ') # raise Exception('Download error')
|
||||
return r
|
||||
|
||||
# Unzip if archive
|
||||
if file.suffix == '.zip':
|
||||
print('unzipping... ', end='')
|
||||
os.system(f'unzip -q {file}') # unzip
|
||||
file.unlink() # remove zip to free space
|
||||
|
||||
print(f'Done ({time.time() - t:.1f}s)')
|
||||
return r
|
||||
|
||||
|
||||
def get_token(cookie="./cookie"):
|
||||
with open(cookie) as f:
|
||||
for line in f:
|
||||
if "download" in line:
|
||||
return line.split()[-1]
|
||||
return ""
|
||||
|
||||
# def upload_blob(bucket_name, source_file_name, destination_blob_name):
|
||||
# # Uploads a file to a bucket
|
||||
# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
|
||||
#
|
||||
# storage_client = storage.Client()
|
||||
# bucket = storage_client.get_bucket(bucket_name)
|
||||
# blob = bucket.blob(destination_blob_name)
|
||||
#
|
||||
# blob.upload_from_filename(source_file_name)
|
||||
#
|
||||
# print('File {} uploaded to {}.'.format(
|
||||
# source_file_name,
|
||||
# destination_blob_name))
|
||||
#
|
||||
#
|
||||
# def download_blob(bucket_name, source_blob_name, destination_file_name):
|
||||
# # Uploads a blob from a bucket
|
||||
# storage_client = storage.Client()
|
||||
# bucket = storage_client.get_bucket(bucket_name)
|
||||
# blob = bucket.blob(source_blob_name)
|
||||
#
|
||||
# blob.download_to_filename(destination_file_name)
|
||||
#
|
||||
# print('Blob {} downloaded to {}.'.format(
|
||||
# source_blob_name,
|
||||
# destination_file_name))
|
||||
@ -1,36 +0,0 @@
|
||||
import torch
|
||||
|
||||
|
||||
|
||||
def decode_infer(output, stride):
|
||||
# logging.info(torch.tensor(output.shape[0]))
|
||||
# logging.info(output.shape)
|
||||
# # bz is batch-size
|
||||
# bz = tuple(torch.tensor(output.shape[0]))
|
||||
# gridsize = tuple(torch.tensor(output.shape[-1]))
|
||||
# logging.info(gridsize)
|
||||
sh = torch.tensor(output.shape)
|
||||
bz = sh[0]
|
||||
gridsize = sh[-1]
|
||||
|
||||
output = output.permute(0, 2, 3, 1)
|
||||
output = output.view(bz, gridsize, gridsize, self.gt_per_grid, 5+self.numclass)
|
||||
x1y1, x2y2, conf, prob = torch.split(
|
||||
output, [2, 2, 1, self.numclass], dim=4)
|
||||
|
||||
shiftx = torch.arange(0, gridsize, dtype=torch.float32)
|
||||
shifty = torch.arange(0, gridsize, dtype=torch.float32)
|
||||
shifty, shiftx = torch.meshgrid([shiftx, shifty])
|
||||
shiftx = shiftx.unsqueeze(-1).repeat(bz, 1, 1, self.gt_per_grid)
|
||||
shifty = shifty.unsqueeze(-1).repeat(bz, 1, 1, self.gt_per_grid)
|
||||
|
||||
xy_grid = torch.stack([shiftx, shifty], dim=4).cuda()
|
||||
x1y1 = (xy_grid+0.5-torch.exp(x1y1))*stride
|
||||
x2y2 = (xy_grid+0.5+torch.exp(x2y2))*stride
|
||||
|
||||
xyxy = torch.cat((x1y1, x2y2), dim=4)
|
||||
conf = torch.sigmoid(conf)
|
||||
prob = torch.sigmoid(prob)
|
||||
output = torch.cat((xyxy, conf, prob), 4)
|
||||
output = output.view(bz, -1, 5+self.numclass)
|
||||
return output
|
||||
@ -1,304 +0,0 @@
|
||||
# Loss functions
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from utils.general import bbox_iou
|
||||
from utils.torch_utils import is_parallel
|
||||
|
||||
|
||||
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
||||
# return positive, negative label smoothing BCE targets
|
||||
return 1.0 - 0.5 * eps, 0.5 * eps
|
||||
|
||||
|
||||
class BCEBlurWithLogitsLoss(nn.Module):
|
||||
# BCEwithLogitLoss() with reduced missing label effects.
|
||||
def __init__(self, alpha=0.05):
|
||||
super(BCEBlurWithLogitsLoss, self).__init__()
|
||||
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
|
||||
self.alpha = alpha
|
||||
|
||||
def forward(self, pred, true):
|
||||
loss = self.loss_fcn(pred, true)
|
||||
pred = torch.sigmoid(pred) # prob from logits
|
||||
dx = pred - true # reduce only missing label effects
|
||||
# dx = (pred - true).abs() # reduce missing label and false label effects
|
||||
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
|
||||
loss *= alpha_factor
|
||||
return loss.mean()
|
||||
|
||||
|
||||
class FocalLoss(nn.Module):
|
||||
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
||||
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||||
super(FocalLoss, self).__init__()
|
||||
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||||
self.gamma = gamma
|
||||
self.alpha = alpha
|
||||
self.reduction = loss_fcn.reduction
|
||||
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||||
|
||||
def forward(self, pred, true):
|
||||
loss = self.loss_fcn(pred, true)
|
||||
# p_t = torch.exp(-loss)
|
||||
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
||||
|
||||
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
||||
pred_prob = torch.sigmoid(pred) # prob from logits
|
||||
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
||||
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||||
modulating_factor = (1.0 - p_t) ** self.gamma
|
||||
loss *= alpha_factor * modulating_factor
|
||||
|
||||
if self.reduction == 'mean':
|
||||
return loss.mean()
|
||||
elif self.reduction == 'sum':
|
||||
return loss.sum()
|
||||
else: # 'none'
|
||||
return loss
|
||||
|
||||
|
||||
class QFocalLoss(nn.Module):
|
||||
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
||||
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||||
super(QFocalLoss, self).__init__()
|
||||
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||||
self.gamma = gamma
|
||||
self.alpha = alpha
|
||||
self.reduction = loss_fcn.reduction
|
||||
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||||
|
||||
def forward(self, pred, true):
|
||||
loss = self.loss_fcn(pred, true)
|
||||
|
||||
pred_prob = torch.sigmoid(pred) # prob from logits
|
||||
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||||
modulating_factor = torch.abs(true - pred_prob) ** self.gamma
|
||||
loss *= alpha_factor * modulating_factor
|
||||
|
||||
if self.reduction == 'mean':
|
||||
return loss.mean()
|
||||
elif self.reduction == 'sum':
|
||||
return loss.sum()
|
||||
else: # 'none'
|
||||
return loss
|
||||
|
||||
class WingLoss(nn.Module):
|
||||
def __init__(self, w=10, e=2):
|
||||
super(WingLoss, self).__init__()
|
||||
# https://arxiv.org/pdf/1711.06753v4.pdf Figure 5
|
||||
self.w = w
|
||||
self.e = e
|
||||
self.C = self.w - self.w * np.log(1 + self.w / self.e)
|
||||
|
||||
def forward(self, x, t, sigma=1):
|
||||
weight = torch.ones_like(t)
|
||||
weight[torch.where(t==-1)] = 0
|
||||
diff = weight * (x - t)
|
||||
abs_diff = diff.abs()
|
||||
flag = (abs_diff.data < self.w).float()
|
||||
y = flag * self.w * torch.log(1 + abs_diff / self.e) + (1 - flag) * (abs_diff - self.C)
|
||||
return y.sum()
|
||||
|
||||
class LandmarksLoss(nn.Module):
|
||||
# BCEwithLogitLoss() with reduced missing label effects.
|
||||
def __init__(self, alpha=1.0):
|
||||
super(LandmarksLoss, self).__init__()
|
||||
self.loss_fcn = WingLoss()#nn.SmoothL1Loss(reduction='sum')
|
||||
self.alpha = alpha
|
||||
|
||||
def forward(self, pred, truel, mask):
|
||||
loss = self.loss_fcn(pred*mask, truel*mask)
|
||||
return loss / (torch.sum(mask) + 10e-14)
|
||||
|
||||
|
||||
def compute_loss(p, targets, model): # predictions, targets, model
|
||||
device = targets.device
|
||||
lcls, lbox, lobj, lmark = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
|
||||
tcls, tbox, indices, anchors, tlandmarks, lmks_mask = build_targets(p, targets, model) # targets
|
||||
h = model.hyp # hyperparameters
|
||||
|
||||
# Define criteria
|
||||
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) # weight=model.class_weights)
|
||||
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
||||
|
||||
landmarks_loss = LandmarksLoss(1.0)
|
||||
|
||||
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
||||
cp, cn = smooth_BCE(eps=0.0)
|
||||
|
||||
# Focal loss
|
||||
g = h['fl_gamma'] # focal loss gamma
|
||||
if g > 0:
|
||||
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
||||
|
||||
# Losses
|
||||
nt = 0 # number of targets
|
||||
no = len(p) # number of outputs
|
||||
balance = [4.0, 1.0, 0.4] if no == 3 else [4.0, 1.0, 0.4, 0.1] # P3-5 or P3-6
|
||||
for i, pi in enumerate(p): # layer index, layer predictions
|
||||
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
||||
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
|
||||
|
||||
n = b.shape[0] # number of targets
|
||||
if n:
|
||||
nt += n # cumulative targets
|
||||
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
|
||||
|
||||
# Regression
|
||||
pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
||||
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
|
||||
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
||||
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
|
||||
lbox += (1.0 - iou).mean() # iou loss
|
||||
|
||||
# Objectness
|
||||
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
|
||||
|
||||
# Classification
|
||||
if model.nc > 1: # cls loss (only if multiple classes)
|
||||
t = torch.full_like(ps[:, 15:], cn, device=device) # targets
|
||||
t[range(n), tcls[i]] = cp
|
||||
lcls += BCEcls(ps[:, 15:], t) # BCE
|
||||
|
||||
# Append targets to text file
|
||||
# with open('targets.txt', 'a') as file:
|
||||
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
||||
|
||||
#landmarks loss
|
||||
#plandmarks = ps[:,5:15].sigmoid() * 8. - 4.
|
||||
plandmarks = ps[:,5:15]
|
||||
|
||||
plandmarks[:, 0:2] = plandmarks[:, 0:2] * anchors[i]
|
||||
plandmarks[:, 2:4] = plandmarks[:, 2:4] * anchors[i]
|
||||
plandmarks[:, 4:6] = plandmarks[:, 4:6] * anchors[i]
|
||||
plandmarks[:, 6:8] = plandmarks[:, 6:8] * anchors[i]
|
||||
plandmarks[:, 8:10] = plandmarks[:,8:10] * anchors[i]
|
||||
|
||||
lmark += landmarks_loss(plandmarks, tlandmarks[i], lmks_mask[i])
|
||||
|
||||
|
||||
lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss
|
||||
|
||||
s = 3 / no # output count scaling
|
||||
lbox *= h['box'] * s
|
||||
lobj *= h['obj'] * s * (1.4 if no == 4 else 1.)
|
||||
lcls *= h['cls'] * s
|
||||
lmark *= h['landmark'] * s
|
||||
|
||||
bs = tobj.shape[0] # batch size
|
||||
|
||||
loss = lbox + lobj + lcls + lmark
|
||||
return loss * bs, torch.cat((lbox, lobj, lcls, lmark, loss)).detach()
|
||||
|
||||
|
||||
def build_targets(p, targets, model):
|
||||
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
||||
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
|
||||
na, nt = det.na, targets.shape[0] # number of anchors, targets
|
||||
tcls, tbox, indices, anch, landmarks, lmks_mask = [], [], [], [], [], []
|
||||
#gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
|
||||
gain = torch.ones(17, device=targets.device)
|
||||
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
||||
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
||||
|
||||
g = 0.5 # bias
|
||||
off = torch.tensor([[0, 0],
|
||||
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
||||
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
||||
], device=targets.device).float() * g # offsets
|
||||
|
||||
for i in range(det.nl):
|
||||
anchors = det.anchors[i]
|
||||
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
||||
#landmarks 10
|
||||
gain[6:16] = torch.tensor(p[i].shape)[[3, 2, 3, 2, 3, 2, 3, 2, 3, 2]] # xyxy gain
|
||||
|
||||
# Match targets to anchors
|
||||
t = targets * gain
|
||||
if nt:
|
||||
# Matches
|
||||
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
||||
j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare
|
||||
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
||||
t = t[j] # filter
|
||||
|
||||
# Offsets
|
||||
gxy = t[:, 2:4] # grid xy
|
||||
gxi = gain[[2, 3]] - gxy # inverse
|
||||
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
||||
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
||||
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
||||
t = t.repeat((5, 1, 1))[j]
|
||||
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
||||
else:
|
||||
t = targets[0]
|
||||
offsets = 0
|
||||
|
||||
# Define
|
||||
b, c = t[:, :2].long().T # image, class
|
||||
gxy = t[:, 2:4] # grid xy
|
||||
gwh = t[:, 4:6] # grid wh
|
||||
gij = (gxy - offsets).long()
|
||||
gi, gj = gij.T # grid xy indices
|
||||
|
||||
# Append
|
||||
a = t[:, 16].long() # anchor indices
|
||||
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
|
||||
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
||||
anch.append(anchors[a]) # anchors
|
||||
tcls.append(c) # class
|
||||
|
||||
#landmarks
|
||||
lks = t[:,6:16]
|
||||
#lks_mask = lks > 0
|
||||
#lks_mask = lks_mask.float()
|
||||
lks_mask = torch.where(lks < 0, torch.full_like(lks, 0.), torch.full_like(lks, 1.0))
|
||||
|
||||
#应该是关键点的坐标除以anch的宽高才对,便于模型学习。使用gwh会导致不同关键点的编码不同,没有统一的参考标准
|
||||
|
||||
lks[:, [0, 1]] = (lks[:, [0, 1]] - gij)
|
||||
lks[:, [2, 3]] = (lks[:, [2, 3]] - gij)
|
||||
lks[:, [4, 5]] = (lks[:, [4, 5]] - gij)
|
||||
lks[:, [6, 7]] = (lks[:, [6, 7]] - gij)
|
||||
lks[:, [8, 9]] = (lks[:, [8, 9]] - gij)
|
||||
|
||||
'''
|
||||
#anch_w = torch.ones(5, device=targets.device).fill_(anchors[0][0])
|
||||
#anch_wh = torch.ones(5, device=targets.device)
|
||||
anch_f_0 = (a == 0).unsqueeze(1).repeat(1, 5)
|
||||
anch_f_1 = (a == 1).unsqueeze(1).repeat(1, 5)
|
||||
anch_f_2 = (a == 2).unsqueeze(1).repeat(1, 5)
|
||||
lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_0, lks[:, [0, 2, 4, 6, 8]] / anchors[0][0], lks[:, [0, 2, 4, 6, 8]])
|
||||
lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_1, lks[:, [0, 2, 4, 6, 8]] / anchors[1][0], lks[:, [0, 2, 4, 6, 8]])
|
||||
lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_2, lks[:, [0, 2, 4, 6, 8]] / anchors[2][0], lks[:, [0, 2, 4, 6, 8]])
|
||||
|
||||
lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_0, lks[:, [1, 3, 5, 7, 9]] / anchors[0][1], lks[:, [1, 3, 5, 7, 9]])
|
||||
lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_1, lks[:, [1, 3, 5, 7, 9]] / anchors[1][1], lks[:, [1, 3, 5, 7, 9]])
|
||||
lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_2, lks[:, [1, 3, 5, 7, 9]] / anchors[2][1], lks[:, [1, 3, 5, 7, 9]])
|
||||
|
||||
#new_lks = lks[lks_mask>0]
|
||||
#print('new_lks: min --- ', torch.min(new_lks), ' max --- ', torch.max(new_lks))
|
||||
|
||||
lks_mask_1 = torch.where(lks < -3, torch.full_like(lks, 0.), torch.full_like(lks, 1.0))
|
||||
lks_mask_2 = torch.where(lks > 3, torch.full_like(lks, 0.), torch.full_like(lks, 1.0))
|
||||
|
||||
lks_mask_new = lks_mask * lks_mask_1 * lks_mask_2
|
||||
lks_mask_new[:, 0] = lks_mask_new[:, 0] * lks_mask_new[:, 1]
|
||||
lks_mask_new[:, 1] = lks_mask_new[:, 0] * lks_mask_new[:, 1]
|
||||
lks_mask_new[:, 2] = lks_mask_new[:, 2] * lks_mask_new[:, 3]
|
||||
lks_mask_new[:, 3] = lks_mask_new[:, 2] * lks_mask_new[:, 3]
|
||||
lks_mask_new[:, 4] = lks_mask_new[:, 4] * lks_mask_new[:, 5]
|
||||
lks_mask_new[:, 5] = lks_mask_new[:, 4] * lks_mask_new[:, 5]
|
||||
lks_mask_new[:, 6] = lks_mask_new[:, 6] * lks_mask_new[:, 7]
|
||||
lks_mask_new[:, 7] = lks_mask_new[:, 6] * lks_mask_new[:, 7]
|
||||
lks_mask_new[:, 8] = lks_mask_new[:, 8] * lks_mask_new[:, 9]
|
||||
lks_mask_new[:, 9] = lks_mask_new[:, 8] * lks_mask_new[:, 9]
|
||||
'''
|
||||
lks_mask_new = lks_mask
|
||||
lmks_mask.append(lks_mask_new)
|
||||
landmarks.append(lks)
|
||||
#print('lks: ', lks.size())
|
||||
|
||||
return tcls, tbox, indices, anch, landmarks, lmks_mask
|
||||
@ -1,200 +0,0 @@
|
||||
# Model validation metrics
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from . import general
|
||||
|
||||
|
||||
def fitness(x):
|
||||
# Model fitness as a weighted combination of metrics
|
||||
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
||||
return (x[:, :4] * w).sum(1)
|
||||
|
||||
|
||||
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='precision-recall_curve.png', names=[]):
|
||||
""" Compute the average precision, given the recall and precision curves.
|
||||
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
||||
# Arguments
|
||||
tp: True positives (nparray, nx1 or nx10).
|
||||
conf: Objectness value from 0-1 (nparray).
|
||||
pred_cls: Predicted object classes (nparray).
|
||||
target_cls: True object classes (nparray).
|
||||
plot: Plot precision-recall curve at mAP@0.5
|
||||
save_dir: Plot save directory
|
||||
# Returns
|
||||
The average precision as computed in py-faster-rcnn.
|
||||
"""
|
||||
|
||||
# Sort by objectness
|
||||
i = np.argsort(-conf)
|
||||
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
||||
|
||||
# Find unique classes
|
||||
unique_classes = np.unique(target_cls)
|
||||
|
||||
# Create Precision-Recall curve and compute AP for each class
|
||||
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
||||
pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
|
||||
s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
|
||||
ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
|
||||
for ci, c in enumerate(unique_classes):
|
||||
i = pred_cls == c
|
||||
n_l = (target_cls == c).sum() # number of labels
|
||||
n_p = i.sum() # number of predictions
|
||||
|
||||
if n_p == 0 or n_l == 0:
|
||||
continue
|
||||
else:
|
||||
# Accumulate FPs and TPs
|
||||
fpc = (1 - tp[i]).cumsum(0)
|
||||
tpc = tp[i].cumsum(0)
|
||||
|
||||
# Recall
|
||||
recall = tpc / (n_l + 1e-16) # recall curve
|
||||
r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases
|
||||
|
||||
# Precision
|
||||
precision = tpc / (tpc + fpc) # precision curve
|
||||
p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score
|
||||
|
||||
# AP from recall-precision curve
|
||||
for j in range(tp.shape[1]):
|
||||
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
||||
if plot and (j == 0):
|
||||
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
||||
|
||||
# Compute F1 score (harmonic mean of precision and recall)
|
||||
f1 = 2 * p * r / (p + r + 1e-16)
|
||||
|
||||
if plot:
|
||||
plot_pr_curve(px, py, ap, save_dir, names)
|
||||
|
||||
return p, r, ap, f1, unique_classes.astype('int32')
|
||||
|
||||
|
||||
def compute_ap(recall, precision):
|
||||
""" Compute the average precision, given the recall and precision curves
|
||||
# Arguments
|
||||
recall: The recall curve (list)
|
||||
precision: The precision curve (list)
|
||||
# Returns
|
||||
Average precision, precision curve, recall curve
|
||||
"""
|
||||
|
||||
# Append sentinel values to beginning and end
|
||||
mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
|
||||
mpre = np.concatenate(([1.], precision, [0.]))
|
||||
|
||||
# Compute the precision envelope
|
||||
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
||||
|
||||
# Integrate area under curve
|
||||
method = 'interp' # methods: 'continuous', 'interp'
|
||||
if method == 'interp':
|
||||
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
||||
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
||||
else: # 'continuous'
|
||||
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
||||
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
||||
|
||||
return ap, mpre, mrec
|
||||
|
||||
|
||||
class ConfusionMatrix:
|
||||
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
|
||||
def __init__(self, nc, conf=0.25, iou_thres=0.45):
|
||||
self.matrix = np.zeros((nc + 1, nc + 1))
|
||||
self.nc = nc # number of classes
|
||||
self.conf = conf
|
||||
self.iou_thres = iou_thres
|
||||
|
||||
def process_batch(self, detections, labels):
|
||||
"""
|
||||
Return intersection-over-union (Jaccard index) of boxes.
|
||||
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||
Arguments:
|
||||
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
||||
labels (Array[M, 5]), class, x1, y1, x2, y2
|
||||
Returns:
|
||||
None, updates confusion matrix accordingly
|
||||
"""
|
||||
detections = detections[detections[:, 4] > self.conf]
|
||||
gt_classes = labels[:, 0].int()
|
||||
detection_classes = detections[:, 5].int()
|
||||
iou = general.box_iou(labels[:, 1:], detections[:, :4])
|
||||
|
||||
x = torch.where(iou > self.iou_thres)
|
||||
if x[0].shape[0]:
|
||||
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
|
||||
if x[0].shape[0] > 1:
|
||||
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
||||
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
||||
else:
|
||||
matches = np.zeros((0, 3))
|
||||
|
||||
n = matches.shape[0] > 0
|
||||
m0, m1, _ = matches.transpose().astype(np.int16)
|
||||
for i, gc in enumerate(gt_classes):
|
||||
j = m0 == i
|
||||
if n and sum(j) == 1:
|
||||
self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
|
||||
else:
|
||||
self.matrix[gc, self.nc] += 1 # background FP
|
||||
|
||||
if n:
|
||||
for i, dc in enumerate(detection_classes):
|
||||
if not any(m1 == i):
|
||||
self.matrix[self.nc, dc] += 1 # background FN
|
||||
|
||||
def matrix(self):
|
||||
return self.matrix
|
||||
|
||||
def plot(self, save_dir='', names=()):
|
||||
try:
|
||||
import seaborn as sn
|
||||
|
||||
array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
|
||||
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
|
||||
|
||||
fig = plt.figure(figsize=(12, 9), tight_layout=True)
|
||||
sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
|
||||
labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
|
||||
sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
|
||||
xticklabels=names + ['background FN'] if labels else "auto",
|
||||
yticklabels=names + ['background FP'] if labels else "auto").set_facecolor((1, 1, 1))
|
||||
fig.axes[0].set_xlabel('True')
|
||||
fig.axes[0].set_ylabel('Predicted')
|
||||
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
def print(self):
|
||||
for i in range(self.nc + 1):
|
||||
print(' '.join(map(str, self.matrix[i])))
|
||||
|
||||
|
||||
# Plots ----------------------------------------------------------------------------------------------------------------
|
||||
|
||||
def plot_pr_curve(px, py, ap, save_dir='.', names=()):
|
||||
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
||||
py = np.stack(py, axis=1)
|
||||
|
||||
if 0 < len(names) < 21: # show mAP in legend if < 10 classes
|
||||
for i, y in enumerate(py.T):
|
||||
ax.plot(px, y, linewidth=1, label=f'{names[i]} %.3f' % ap[i, 0]) # plot(recall, precision)
|
||||
else:
|
||||
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
|
||||
|
||||
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
|
||||
ax.set_xlabel('Recall')
|
||||
ax.set_ylabel('Precision')
|
||||
ax.set_xlim(0, 1)
|
||||
ax.set_ylim(0, 1)
|
||||
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
||||
fig.savefig(Path(save_dir) / 'precision_recall_curve.png', dpi=250)
|
||||
@ -1,413 +0,0 @@
|
||||
# Plotting utils
|
||||
|
||||
import glob
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
from copy import copy
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
import torch
|
||||
import yaml
|
||||
from PIL import Image, ImageDraw
|
||||
from scipy.signal import butter, filtfilt
|
||||
|
||||
from utils.general import xywh2xyxy, xyxy2xywh
|
||||
from utils.metrics import fitness
|
||||
|
||||
# Settings
|
||||
matplotlib.rc('font', **{'size': 11})
|
||||
matplotlib.use('Agg') # for writing to files only
|
||||
|
||||
|
||||
def color_list():
|
||||
# Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
|
||||
def hex2rgb(h):
|
||||
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
|
||||
|
||||
return [hex2rgb(h) for h in plt.rcParams['axes.prop_cycle'].by_key()['color']]
|
||||
|
||||
|
||||
def hist2d(x, y, n=100):
|
||||
# 2d histogram used in labels.png and evolve.png
|
||||
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
|
||||
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
|
||||
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
|
||||
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
|
||||
return np.log(hist[xidx, yidx])
|
||||
|
||||
|
||||
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
|
||||
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
|
||||
def butter_lowpass(cutoff, fs, order):
|
||||
nyq = 0.5 * fs
|
||||
normal_cutoff = cutoff / nyq
|
||||
return butter(order, normal_cutoff, btype='low', analog=False)
|
||||
|
||||
b, a = butter_lowpass(cutoff, fs, order=order)
|
||||
return filtfilt(b, a, data) # forward-backward filter
|
||||
|
||||
|
||||
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
|
||||
# Plots one bounding box on image img
|
||||
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
|
||||
color = color or [random.randint(0, 255) for _ in range(3)]
|
||||
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
|
||||
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
|
||||
if label:
|
||||
tf = max(tl - 1, 1) # font thickness
|
||||
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
||||
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
|
||||
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
|
||||
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
||||
|
||||
|
||||
def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
|
||||
# Compares the two methods for width-height anchor multiplication
|
||||
# https://github.com/ultralytics/yolov3/issues/168
|
||||
x = np.arange(-4.0, 4.0, .1)
|
||||
ya = np.exp(x)
|
||||
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
|
||||
|
||||
fig = plt.figure(figsize=(6, 3), tight_layout=True)
|
||||
plt.plot(x, ya, '.-', label='YOLOv3')
|
||||
plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2')
|
||||
plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6')
|
||||
plt.xlim(left=-4, right=4)
|
||||
plt.ylim(bottom=0, top=6)
|
||||
plt.xlabel('input')
|
||||
plt.ylabel('output')
|
||||
plt.grid()
|
||||
plt.legend()
|
||||
fig.savefig('comparison.png', dpi=200)
|
||||
|
||||
|
||||
def output_to_target(output):
|
||||
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
|
||||
targets = []
|
||||
for i, o in enumerate(output):
|
||||
for *box, conf, cls in o.cpu().numpy():
|
||||
targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
|
||||
return np.array(targets)
|
||||
|
||||
|
||||
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
|
||||
# Plot image grid with labels
|
||||
|
||||
if isinstance(images, torch.Tensor):
|
||||
images = images.cpu().float().numpy()
|
||||
if isinstance(targets, torch.Tensor):
|
||||
targets = targets.cpu().numpy()
|
||||
|
||||
# un-normalise
|
||||
if np.max(images[0]) <= 1:
|
||||
images *= 255
|
||||
|
||||
tl = 3 # line thickness
|
||||
tf = max(tl - 1, 1) # font thickness
|
||||
bs, _, h, w = images.shape # batch size, _, height, width
|
||||
bs = min(bs, max_subplots) # limit plot images
|
||||
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
||||
|
||||
# Check if we should resize
|
||||
scale_factor = max_size / max(h, w)
|
||||
if scale_factor < 1:
|
||||
h = math.ceil(scale_factor * h)
|
||||
w = math.ceil(scale_factor * w)
|
||||
|
||||
# colors = color_list() # list of colors
|
||||
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
|
||||
for i, img in enumerate(images):
|
||||
if i == max_subplots: # if last batch has fewer images than we expect
|
||||
break
|
||||
|
||||
block_x = int(w * (i // ns))
|
||||
block_y = int(h * (i % ns))
|
||||
|
||||
img = img.transpose(1, 2, 0)
|
||||
if scale_factor < 1:
|
||||
img = cv2.resize(img, (w, h))
|
||||
|
||||
mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
|
||||
if len(targets) > 0:
|
||||
image_targets = targets[targets[:, 0] == i]
|
||||
boxes = xywh2xyxy(image_targets[:, 2:6]).T
|
||||
classes = image_targets[:, 1].astype('int')
|
||||
labels = image_targets.shape[1] == 6 # labels if no conf column
|
||||
conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
|
||||
|
||||
if boxes.shape[1]:
|
||||
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
||||
boxes[[0, 2]] *= w # scale to pixels
|
||||
boxes[[1, 3]] *= h
|
||||
elif scale_factor < 1: # absolute coords need scale if image scales
|
||||
boxes *= scale_factor
|
||||
boxes[[0, 2]] += block_x
|
||||
boxes[[1, 3]] += block_y
|
||||
for j, box in enumerate(boxes.T):
|
||||
cls = int(classes[j])
|
||||
# color = colors[cls % len(colors)]
|
||||
cls = names[cls] if names else cls
|
||||
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
||||
label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
|
||||
plot_one_box(box, mosaic, label=label, color=None, line_thickness=tl)
|
||||
|
||||
# Draw image filename labels
|
||||
if paths:
|
||||
label = Path(paths[i]).name[:40] # trim to 40 char
|
||||
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
||||
cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
|
||||
lineType=cv2.LINE_AA)
|
||||
|
||||
# Image border
|
||||
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
|
||||
|
||||
if fname:
|
||||
r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
|
||||
mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
|
||||
# cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
|
||||
Image.fromarray(mosaic).save(fname) # PIL save
|
||||
return mosaic
|
||||
|
||||
|
||||
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
|
||||
# Plot LR simulating training for full epochs
|
||||
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
|
||||
y = []
|
||||
for _ in range(epochs):
|
||||
scheduler.step()
|
||||
y.append(optimizer.param_groups[0]['lr'])
|
||||
plt.plot(y, '.-', label='LR')
|
||||
plt.xlabel('epoch')
|
||||
plt.ylabel('LR')
|
||||
plt.grid()
|
||||
plt.xlim(0, epochs)
|
||||
plt.ylim(0)
|
||||
plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
|
||||
plt.close()
|
||||
|
||||
|
||||
def plot_test_txt(): # from utils.plots import *; plot_test()
|
||||
# Plot test.txt histograms
|
||||
x = np.loadtxt('test.txt', dtype=np.float32)
|
||||
box = xyxy2xywh(x[:, :4])
|
||||
cx, cy = box[:, 0], box[:, 1]
|
||||
|
||||
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
|
||||
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
|
||||
ax.set_aspect('equal')
|
||||
plt.savefig('hist2d.png', dpi=300)
|
||||
|
||||
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
|
||||
ax[0].hist(cx, bins=600)
|
||||
ax[1].hist(cy, bins=600)
|
||||
plt.savefig('hist1d.png', dpi=200)
|
||||
|
||||
|
||||
def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
|
||||
# Plot targets.txt histograms
|
||||
x = np.loadtxt('targets.txt', dtype=np.float32).T
|
||||
s = ['x targets', 'y targets', 'width targets', 'height targets']
|
||||
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
|
||||
ax = ax.ravel()
|
||||
for i in range(4):
|
||||
ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
|
||||
ax[i].legend()
|
||||
ax[i].set_title(s[i])
|
||||
plt.savefig('targets.jpg', dpi=200)
|
||||
|
||||
|
||||
def plot_study_txt(path='study/', x=None): # from utils.plots import *; plot_study_txt()
|
||||
# Plot study.txt generated by test.py
|
||||
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
|
||||
ax = ax.ravel()
|
||||
|
||||
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
|
||||
for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']]:
|
||||
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
|
||||
x = np.arange(y.shape[1]) if x is None else np.array(x)
|
||||
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
|
||||
for i in range(7):
|
||||
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
|
||||
ax[i].set_title(s[i])
|
||||
|
||||
j = y[3].argmax() + 1
|
||||
ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8,
|
||||
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
|
||||
|
||||
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
|
||||
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
|
||||
|
||||
ax2.grid()
|
||||
ax2.set_yticks(np.arange(30, 60, 5))
|
||||
ax2.set_xlim(0, 30)
|
||||
ax2.set_ylim(29, 51)
|
||||
ax2.set_xlabel('GPU Speed (ms/img)')
|
||||
ax2.set_ylabel('COCO AP val')
|
||||
ax2.legend(loc='lower right')
|
||||
plt.savefig('test_study.png', dpi=300)
|
||||
|
||||
|
||||
def plot_labels(labels, save_dir=Path(''), loggers=None):
|
||||
# plot dataset labels
|
||||
print('Plotting labels... ')
|
||||
c, b = labels[:, 0], labels[:, 1:5].transpose() # classes, boxes
|
||||
nc = int(c.max() + 1) # number of classes
|
||||
colors = color_list()
|
||||
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
|
||||
|
||||
# seaborn correlogram
|
||||
sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
|
||||
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
|
||||
plt.close()
|
||||
|
||||
# matplotlib labels
|
||||
matplotlib.use('svg') # faster
|
||||
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
|
||||
ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
|
||||
ax[0].set_xlabel('classes')
|
||||
sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
|
||||
sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
|
||||
|
||||
# rectangles
|
||||
labels[:, 1:3] = 0.5 # center
|
||||
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
|
||||
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
|
||||
# for cls, *box in labels[:1000]:
|
||||
# ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot
|
||||
ax[1].imshow(img)
|
||||
ax[1].axis('off')
|
||||
|
||||
for a in [0, 1, 2, 3]:
|
||||
for s in ['top', 'right', 'left', 'bottom']:
|
||||
ax[a].spines[s].set_visible(False)
|
||||
|
||||
plt.savefig(save_dir / 'labels.jpg', dpi=200)
|
||||
matplotlib.use('Agg')
|
||||
plt.close()
|
||||
|
||||
# loggers
|
||||
for k, v in loggers.items() or {}:
|
||||
if k == 'wandb' and v:
|
||||
v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]})
|
||||
|
||||
|
||||
def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
|
||||
# Plot hyperparameter evolution results in evolve.txt
|
||||
with open(yaml_file) as f:
|
||||
hyp = yaml.load(f, Loader=yaml.SafeLoader)
|
||||
x = np.loadtxt('evolve.txt', ndmin=2)
|
||||
f = fitness(x)
|
||||
# weights = (f - f.min()) ** 2 # for weighted results
|
||||
plt.figure(figsize=(10, 12), tight_layout=True)
|
||||
matplotlib.rc('font', **{'size': 8})
|
||||
for i, (k, v) in enumerate(hyp.items()):
|
||||
y = x[:, i + 7]
|
||||
# mu = (y * weights).sum() / weights.sum() # best weighted result
|
||||
mu = y[f.argmax()] # best single result
|
||||
plt.subplot(6, 5, i + 1)
|
||||
plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
|
||||
plt.plot(mu, f.max(), 'k+', markersize=15)
|
||||
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
|
||||
if i % 5 != 0:
|
||||
plt.yticks([])
|
||||
print('%15s: %.3g' % (k, mu))
|
||||
plt.savefig('evolve.png', dpi=200)
|
||||
print('\nPlot saved as evolve.png')
|
||||
|
||||
|
||||
def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
|
||||
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
|
||||
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
|
||||
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
|
||||
files = list(Path(save_dir).glob('frames*.txt'))
|
||||
for fi, f in enumerate(files):
|
||||
try:
|
||||
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
|
||||
n = results.shape[1] # number of rows
|
||||
x = np.arange(start, min(stop, n) if stop else n)
|
||||
results = results[:, x]
|
||||
t = (results[0] - results[0].min()) # set t0=0s
|
||||
results[0] = x
|
||||
for i, a in enumerate(ax):
|
||||
if i < len(results):
|
||||
label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
|
||||
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
|
||||
a.set_title(s[i])
|
||||
a.set_xlabel('time (s)')
|
||||
# if fi == len(files) - 1:
|
||||
# a.set_ylim(bottom=0)
|
||||
for side in ['top', 'right']:
|
||||
a.spines[side].set_visible(False)
|
||||
else:
|
||||
a.remove()
|
||||
except Exception as e:
|
||||
print('Warning: Plotting error for %s; %s' % (f, e))
|
||||
|
||||
ax[1].legend()
|
||||
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
|
||||
|
||||
|
||||
def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
|
||||
# Plot training 'results*.txt', overlaying train and val losses
|
||||
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
|
||||
t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
|
||||
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
|
||||
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
||||
n = results.shape[1] # number of rows
|
||||
x = range(start, min(stop, n) if stop else n)
|
||||
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
|
||||
ax = ax.ravel()
|
||||
for i in range(5):
|
||||
for j in [i, i + 5]:
|
||||
y = results[j, x]
|
||||
ax[i].plot(x, y, marker='.', label=s[j])
|
||||
# y_smooth = butter_lowpass_filtfilt(y)
|
||||
# ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
|
||||
|
||||
ax[i].set_title(t[i])
|
||||
ax[i].legend()
|
||||
ax[i].set_ylabel(f) if i == 0 else None # add filename
|
||||
fig.savefig(f.replace('.txt', '.png'), dpi=200)
|
||||
|
||||
|
||||
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
|
||||
# Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
|
||||
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
|
||||
ax = ax.ravel()
|
||||
s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
|
||||
'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
|
||||
if bucket:
|
||||
# files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
|
||||
files = ['results%g.txt' % x for x in id]
|
||||
c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
|
||||
os.system(c)
|
||||
else:
|
||||
files = list(Path(save_dir).glob('results*.txt'))
|
||||
assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
|
||||
for fi, f in enumerate(files):
|
||||
try:
|
||||
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
||||
n = results.shape[1] # number of rows
|
||||
x = range(start, min(stop, n) if stop else n)
|
||||
for i in range(10):
|
||||
y = results[i, x]
|
||||
if i in [0, 1, 2, 5, 6, 7]:
|
||||
y[y == 0] = np.nan # don't show zero loss values
|
||||
# y /= y[0] # normalize
|
||||
label = labels[fi] if len(labels) else f.stem
|
||||
ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
|
||||
ax[i].set_title(s[i])
|
||||
# if i in [5, 6, 7]: # share train and val loss y axes
|
||||
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
||||
except Exception as e:
|
||||
print('Warning: Plotting error for %s; %s' % (f, e))
|
||||
|
||||
ax[1].legend()
|
||||
fig.savefig(Path(save_dir) / 'results.png', dpi=200)
|
||||
@ -1,294 +0,0 @@
|
||||
# PyTorch utils
|
||||
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import subprocess
|
||||
import time
|
||||
from contextlib import contextmanager
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch.backends.cudnn as cudnn
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchvision
|
||||
|
||||
try:
|
||||
import thop # for FLOPS computation
|
||||
except ImportError:
|
||||
thop = None
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def torch_distributed_zero_first(local_rank: int):
|
||||
"""
|
||||
Decorator to make all processes in distributed training wait for each local_master to do something.
|
||||
"""
|
||||
if local_rank not in [-1, 0]:
|
||||
torch.distributed.barrier()
|
||||
yield
|
||||
if local_rank == 0:
|
||||
torch.distributed.barrier()
|
||||
|
||||
|
||||
def init_torch_seeds(seed=0):
|
||||
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
|
||||
torch.manual_seed(seed)
|
||||
if seed == 0: # slower, more reproducible
|
||||
cudnn.benchmark, cudnn.deterministic = False, True
|
||||
else: # faster, less reproducible
|
||||
cudnn.benchmark, cudnn.deterministic = True, False
|
||||
|
||||
|
||||
def git_describe():
|
||||
# return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
|
||||
if Path('.git').exists():
|
||||
return subprocess.check_output('git describe --tags --long --always', shell=True).decode('utf-8')[:-1]
|
||||
else:
|
||||
return ''
|
||||
|
||||
|
||||
def select_device(device='', batch_size=None):
|
||||
# device = 'cpu' or '0' or '0,1,2,3'
|
||||
s = f'YOLOv5 {git_describe()} torch {torch.__version__} ' # string
|
||||
cpu = device.lower() == 'cpu'
|
||||
if cpu:
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
|
||||
elif device: # non-cpu device requested
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
|
||||
assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
|
||||
|
||||
cuda = not cpu and torch.cuda.is_available()
|
||||
if cuda:
|
||||
n = torch.cuda.device_count()
|
||||
if n > 1 and batch_size: # check that batch_size is compatible with device_count
|
||||
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
|
||||
space = ' ' * len(s)
|
||||
for i, d in enumerate(device.split(',') if device else range(n)):
|
||||
p = torch.cuda.get_device_properties(i)
|
||||
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
|
||||
else:
|
||||
s += 'CPU\n'
|
||||
|
||||
logger.info(s) # skip a line
|
||||
return torch.device('cuda:0' if cuda else 'cpu')
|
||||
|
||||
|
||||
def time_synchronized():
|
||||
# pytorch-accurate time
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
return time.time()
|
||||
|
||||
|
||||
def profile(x, ops, n=100, device=None):
|
||||
# profile a pytorch module or list of modules. Example usage:
|
||||
# x = torch.randn(16, 3, 640, 640) # input
|
||||
# m1 = lambda x: x * torch.sigmoid(x)
|
||||
# m2 = nn.SiLU()
|
||||
# profile(x, [m1, m2], n=100) # profile speed over 100 iterations
|
||||
|
||||
device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
||||
x = x.to(device)
|
||||
x.requires_grad = True
|
||||
print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
|
||||
print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
|
||||
for m in ops if isinstance(ops, list) else [ops]:
|
||||
m = m.to(device) if hasattr(m, 'to') else m # device
|
||||
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
|
||||
dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
|
||||
try:
|
||||
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
|
||||
except:
|
||||
flops = 0
|
||||
|
||||
for _ in range(n):
|
||||
t[0] = time_synchronized()
|
||||
y = m(x)
|
||||
t[1] = time_synchronized()
|
||||
try:
|
||||
_ = y.sum().backward()
|
||||
t[2] = time_synchronized()
|
||||
except: # no backward method
|
||||
t[2] = float('nan')
|
||||
dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
|
||||
dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
|
||||
|
||||
s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
|
||||
s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
|
||||
p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
|
||||
print(f'{p:12.4g}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
|
||||
|
||||
|
||||
def is_parallel(model):
|
||||
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
||||
|
||||
|
||||
def intersect_dicts(da, db, exclude=()):
|
||||
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
||||
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
|
||||
|
||||
|
||||
def initialize_weights(model):
|
||||
for m in model.modules():
|
||||
t = type(m)
|
||||
if t is nn.Conv2d:
|
||||
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
elif t is nn.BatchNorm2d:
|
||||
m.eps = 1e-3
|
||||
m.momentum = 0.03
|
||||
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
|
||||
m.inplace = True
|
||||
|
||||
|
||||
def find_modules(model, mclass=nn.Conv2d):
|
||||
# Finds layer indices matching module class 'mclass'
|
||||
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
|
||||
|
||||
|
||||
def sparsity(model):
|
||||
# Return global model sparsity
|
||||
a, b = 0., 0.
|
||||
for p in model.parameters():
|
||||
a += p.numel()
|
||||
b += (p == 0).sum()
|
||||
return b / a
|
||||
|
||||
|
||||
def prune(model, amount=0.3):
|
||||
# Prune model to requested global sparsity
|
||||
import torch.nn.utils.prune as prune
|
||||
print('Pruning model... ', end='')
|
||||
for name, m in model.named_modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
prune.l1_unstructured(m, name='weight', amount=amount) # prune
|
||||
prune.remove(m, 'weight') # make permanent
|
||||
print(' %.3g global sparsity' % sparsity(model))
|
||||
|
||||
|
||||
def fuse_conv_and_bn(conv, bn):
|
||||
# Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
||||
fusedconv = nn.Conv2d(conv.in_channels,
|
||||
conv.out_channels,
|
||||
kernel_size=conv.kernel_size,
|
||||
stride=conv.stride,
|
||||
padding=conv.padding,
|
||||
groups=conv.groups,
|
||||
bias=True).requires_grad_(False).to(conv.weight.device)
|
||||
|
||||
# prepare filters
|
||||
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
||||
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
||||
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
|
||||
|
||||
# prepare spatial bias
|
||||
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
|
||||
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
||||
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
||||
|
||||
return fusedconv
|
||||
|
||||
|
||||
def model_info(model, verbose=False, img_size=640):
|
||||
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
|
||||
n_p = sum(x.numel() for x in model.parameters()) # number parameters
|
||||
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
|
||||
if verbose:
|
||||
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
|
||||
for i, (name, p) in enumerate(model.named_parameters()):
|
||||
name = name.replace('module_list.', '')
|
||||
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
|
||||
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
|
||||
|
||||
try: # FLOPS
|
||||
from thop import profile
|
||||
stride = int(model.stride.max()) if hasattr(model, 'stride') else 32
|
||||
img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
|
||||
flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
|
||||
img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
|
||||
fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
|
||||
except (ImportError, Exception):
|
||||
fs = ''
|
||||
|
||||
logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
|
||||
|
||||
|
||||
def load_classifier(name='resnet101', n=2):
|
||||
# Loads a pretrained model reshaped to n-class output
|
||||
model = torchvision.models.__dict__[name](pretrained=True)
|
||||
|
||||
# ResNet model properties
|
||||
# input_size = [3, 224, 224]
|
||||
# input_space = 'RGB'
|
||||
# input_range = [0, 1]
|
||||
# mean = [0.485, 0.456, 0.406]
|
||||
# std = [0.229, 0.224, 0.225]
|
||||
|
||||
# Reshape output to n classes
|
||||
filters = model.fc.weight.shape[1]
|
||||
model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
|
||||
model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
|
||||
model.fc.out_features = n
|
||||
return model
|
||||
|
||||
|
||||
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
|
||||
# scales img(bs,3,y,x) by ratio constrained to gs-multiple
|
||||
if ratio == 1.0:
|
||||
return img
|
||||
else:
|
||||
h, w = img.shape[2:]
|
||||
s = (int(h * ratio), int(w * ratio)) # new size
|
||||
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
|
||||
if not same_shape: # pad/crop img
|
||||
h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
|
||||
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
|
||||
|
||||
|
||||
def copy_attr(a, b, include=(), exclude=()):
|
||||
# Copy attributes from b to a, options to only include [...] and to exclude [...]
|
||||
for k, v in b.__dict__.items():
|
||||
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
|
||||
continue
|
||||
else:
|
||||
setattr(a, k, v)
|
||||
|
||||
|
||||
class ModelEMA:
|
||||
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
|
||||
Keep a moving average of everything in the model state_dict (parameters and buffers).
|
||||
This is intended to allow functionality like
|
||||
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
||||
A smoothed version of the weights is necessary for some training schemes to perform well.
|
||||
This class is sensitive where it is initialized in the sequence of model init,
|
||||
GPU assignment and distributed training wrappers.
|
||||
"""
|
||||
|
||||
def __init__(self, model, decay=0.9999, updates=0):
|
||||
# Create EMA
|
||||
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
|
||||
# if next(model.parameters()).device.type != 'cpu':
|
||||
# self.ema.half() # FP16 EMA
|
||||
self.updates = updates # number of EMA updates
|
||||
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
|
||||
for p in self.ema.parameters():
|
||||
p.requires_grad_(False)
|
||||
|
||||
def update(self, model):
|
||||
# Update EMA parameters
|
||||
with torch.no_grad():
|
||||
self.updates += 1
|
||||
d = self.decay(self.updates)
|
||||
|
||||
msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
|
||||
for k, v in self.ema.state_dict().items():
|
||||
if v.dtype.is_floating_point:
|
||||
v *= d
|
||||
v += (1. - d) * msd[k].detach()
|
||||
|
||||
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
|
||||
# Update EMA attributes
|
||||
copy_attr(self.ema, model, include, exclude)
|
||||
BIN
modules/fjpalmvein/C/BIRCapData.dat
Normal file
BIN
modules/fjpalmvein/C/BIRCapData.dat
Normal file
Binary file not shown.
BIN
modules/fjpalmvein/C/BIRData.dat
Normal file
BIN
modules/fjpalmvein/C/BIRData.dat
Normal file
Binary file not shown.
BIN
modules/fjpalmvein/C/BioAPI_sample_C_Verify
Executable file
BIN
modules/fjpalmvein/C/BioAPI_sample_C_Verify
Executable file
Binary file not shown.
@ -23,7 +23,7 @@
|
||||
|
||||
|
||||
|
||||
#define APPLICATION_KEY "your application key"
|
||||
#define APPLICATION_KEY "P6Kiuy2L4CifuBuK"
|
||||
#define ENROLL_FILENAME "BIRData.dat"
|
||||
#define CAPTURE_FILENAME "BIRCapData.dat"
|
||||
#define SILHOUETTE_FILENAME "silhouette.bmp"
|
||||
@ -193,7 +193,7 @@ int main(int argc, char **argv)
|
||||
if ( fp != NULL ) {
|
||||
fwrite(ucEnrolledBIR, sizeof(unsigned char), datasize, fp);
|
||||
fclose(fp);
|
||||
printf(" FILE: %s (DataSize=%d)\n", ENROLL_FILENAME, datasize);
|
||||
printf(" FILE: %s (DataSize=%ld)\n", ENROLL_FILENAME, datasize);
|
||||
}
|
||||
}
|
||||
|
||||
@ -296,7 +296,7 @@ int main(int argc, char **argv)
|
||||
if ( fp != NULL ) {
|
||||
fwrite(ucCapturedBIR, sizeof(unsigned char), datasize, fp);
|
||||
fclose(fp);
|
||||
printf(" FILE: %s (DataSize=%d)\n", CAPTURE_FILENAME, datasize);
|
||||
printf(" FILE: %s (DataSize=%ld)\n", CAPTURE_FILENAME, datasize);
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------
|
||||
|
||||
BIN
modules/fjpalmvein/C/BioAPI_sample_C_Verify.o
Normal file
BIN
modules/fjpalmvein/C/BioAPI_sample_C_Verify.o
Normal file
Binary file not shown.
Binary file not shown.
BIN
modules/fjpalmvein/C/LM/PvAPITrc01.dat
Normal file
BIN
modules/fjpalmvein/C/LM/PvAPITrc01.dat
Normal file
Binary file not shown.
15
modules/fjpalmvein/C/LM/foo
Normal file
15
modules/fjpalmvein/C/LM/foo
Normal file
@ -0,0 +1,15 @@
|
||||
total 5396
|
||||
-rw-rw-r-- 1 carl carl 253 Dec 19 2017 PvAPI.INI
|
||||
-rw-rw-r-- 1 carl carl 2706 Oct 21 2021 F3BC4BSP.DAT
|
||||
-rwxr-xr-x 1 carl carl 237104 Mar 17 2022 libf3bc4com.so
|
||||
-rwxrwxr-x 1 carl carl 2045856 Mar 17 2022 libf3bc4cap.so
|
||||
-rwxr-xr-x 1 carl carl 1350272 Mar 17 2022 libf3bc4mat.so
|
||||
-rwxr-xr-x 1 carl carl 499824 Mar 17 2022 libf3bc4bsp.so
|
||||
-rwxr-xr-x 1 carl carl 146328 Mar 17 2022 libf3bc4bio.so
|
||||
-rw-r--r-- 1 carl carl 22 Mar 17 2022 pvfwvl.txt
|
||||
-rw-rw-r-- 1 carl carl 403 May 31 22:36 F3BC4SDK.LIC
|
||||
-rw-rw-rw- 1 root root 1048224 Jun 7 17:40 PvAPITrc01.dat
|
||||
drwxrwxr-x 5 carl carl 4096 Jun 7 20:17 ..
|
||||
-rw-rw-rw- 1 carl carl 159033 Jun 7 20:21 PvAPITrc.dat
|
||||
-rw-rw-r-- 1 carl carl 0 Jun 7 20:22 foo
|
||||
drwxr-xr-x 2 carl carl 4096 Jun 7 20:22 .
|
||||
16
modules/fjpalmvein/C/LM/foobar
Normal file
16
modules/fjpalmvein/C/LM/foobar
Normal file
@ -0,0 +1,16 @@
|
||||
total 5428
|
||||
-rw-rw-r-- 1 carl carl 253 Dec 19 2017 PvAPI.INI
|
||||
-rw-rw-r-- 1 carl carl 2706 Oct 21 2021 F3BC4BSP.DAT
|
||||
-rwxr-xr-x 1 carl carl 237104 Mar 17 2022 libf3bc4com.so
|
||||
-rwxrwxr-x 1 carl carl 2045856 Mar 17 2022 libf3bc4cap.so
|
||||
-rwxr-xr-x 1 carl carl 1350272 Mar 17 2022 libf3bc4mat.so
|
||||
-rwxr-xr-x 1 carl carl 499824 Mar 17 2022 libf3bc4bsp.so
|
||||
-rwxr-xr-x 1 carl carl 146328 Mar 17 2022 libf3bc4bio.so
|
||||
-rw-r--r-- 1 carl carl 22 Mar 17 2022 pvfwvl.txt
|
||||
-rw-rw-r-- 1 carl carl 403 May 31 22:36 F3BC4SDK.LIC
|
||||
-rw-rw-rw- 1 root root 1048224 Jun 7 17:40 PvAPITrc01.dat
|
||||
drwxrwxr-x 5 carl carl 4096 Jun 7 20:17 ..
|
||||
-rw-rw-r-- 1 carl carl 786 Jun 7 20:22 foo
|
||||
-rw-rw-rw- 1 carl carl 187399 Jun 7 20:22 PvAPITrc.dat
|
||||
-rw-rw-r-- 1 carl carl 0 Jun 7 20:22 foobar
|
||||
drwxr-xr-x 2 carl carl 4096 Jun 7 20:22 .
|
||||
@ -27,6 +27,12 @@ $(VERIFY).o : $(VERIFY).c
|
||||
clean:
|
||||
$(RM) *~ *.o $(IDENTIFY) $(VERIFY)
|
||||
|
||||
handjob: handjob.o
|
||||
$(CC) -o handjob handjob.o $(LDFLAGS) $(LDLIBS)
|
||||
|
||||
handjob.o : handjob.c
|
||||
$(CC) $(CFLAGS) handjob.c
|
||||
|
||||
%.o: %.c
|
||||
$(CC) $(CFLAGS) -c -o $@ $<
|
||||
|
||||
|
||||
@ -0,0 +1,10 @@
|
||||
ACTION!="add",\
|
||||
KERNEL=="fjveincam*"\
|
||||
DRIVERS=="fjveincam",\
|
||||
MODE="0666",
|
||||
SUBSYSTEM=="usbmisc",\
|
||||
ATTRS{idVendor}=="04c5",\
|
||||
ATTRS{idProduct}=="1526",\
|
||||
SYMLINK+="usb/fjveincam%n",\
|
||||
RUN+="/bin/bash -c 'date >> /tmp/fjpv'",\
|
||||
RUN+="/bin/bash -c 'echo $kernel _ $devpath _ $number id=$id MM=$major:$minor $name $sys >> /tmp/fjpv'"
|
||||
Binary file not shown.
Binary file not shown.
937
modules/fjpalmvein/C/fjpalmvein-main/fjveincam.c.carl
Normal file
937
modules/fjpalmvein/C/fjpalmvein-main/fjveincam.c.carl
Normal file
@ -0,0 +1,937 @@
|
||||
/**
|
||||
* USB PalmSecure Sensor driver (kernel-2.6)
|
||||
*
|
||||
* Copyright (C) 2012 FUJITSU FRONTECH LIMITED
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License version
|
||||
* 2 as published by the Free Software Foundation.
|
||||
*
|
||||
* Notes:
|
||||
* Heavily based on usb_skeleton.c
|
||||
* Copyright (C) 2001-2004 Greg Kroah-Hartman (greg@kroah.com)
|
||||
*
|
||||
* History:
|
||||
*
|
||||
* 2012-07-06 - V31L01
|
||||
* - first version
|
||||
*
|
||||
* Problems? Try...
|
||||
* lsusb or lsusb -vd MANU:PROD // swap in the device values << FUJITSU PalmSecure-F Pro
|
||||
* sudo udevadm info -a -n /dev/usb/fjveincam0 // get infor about the device << major=180 minor=0
|
||||
* cat /sys/class/usbmisc/fjveincam0/ * //
|
||||
* ls -al /sys/class/usbmisc/fjveincam0/device/driver/module - coresize,
|
||||
|
||||
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/init.h> //+
|
||||
#include <linux/slab.h>
|
||||
#include <linux/module.h>
|
||||
// kref.h-
|
||||
#include <linux/uaccess.h>
|
||||
#include <linux/mutex.h> //+
|
||||
#include <linux/sched.h> //+
|
||||
#include <linux/usb.h>
|
||||
|
||||
|
||||
/* Define these values to match your devices */
|
||||
#define VENDOR_ID 0x04C5
|
||||
#define PRODUCT_ID 0x1526
|
||||
|
||||
/* table of devices that work with this driver */
|
||||
static struct usb_device_id fjveincam_table [] = {
|
||||
{ USB_DEVICE(VENDOR_ID, PRODUCT_ID) },
|
||||
{ } /* Terminating entry */
|
||||
};
|
||||
MODULE_DEVICE_TABLE(usb, fjveincam_table);
|
||||
|
||||
|
||||
/* Get a minor range for your devices from the usb maintainer */
|
||||
#define USB_subminor_BASE 160
|
||||
|
||||
|
||||
/* Structure to hold all of our device specific stuff */
|
||||
struct fjveincam {
|
||||
struct usb_device *udev;
|
||||
unsigned char subminor; /* minor number - used in disconnect() */
|
||||
char confirmed; /* Not zero if the device is used (Not in phase of confirming) */
|
||||
int open_count; /* count the number of openers */
|
||||
char *obuf, *ibuf; /* transfer buffers */
|
||||
char bulk_in_ep; /* Endpoint assignments */
|
||||
char bulk_out_ep; /* Endpoint assignments */
|
||||
wait_queue_head_t wait_q; /* wait-queue for checking sensors */
|
||||
struct mutex io_mutex; /* lock to prevent concurrent reads or writes */
|
||||
int o_timeout; /* counter of open time out */
|
||||
int r_error; /* counter of read error */
|
||||
int r_lasterr; /* read last error */
|
||||
int w_error; /* counter of write error */
|
||||
int w_lasterr; /* write last error */
|
||||
};
|
||||
#define to_skel_dev(d) container_of(d, struct fjveincam, kref)
|
||||
|
||||
static struct usb_driver usb_fjveincam_driver;
|
||||
//skel static void fjveincam_draw_down(struct usb_fjveincam *dev);
|
||||
|
||||
|
||||
|
||||
/* our private defines. if this grows any larger, use your own .h file */
|
||||
#include "fjveincam.h"
|
||||
|
||||
|
||||
#define CONFIG_FJVEINCAM_DEBUGXXX
|
||||
|
||||
|
||||
//
|
||||
// # # ##### ###### ##### ## # ####
|
||||
// # # # # # # # # # #
|
||||
// # # # ##### # # # # # ####
|
||||
// # # # # ##### ###### # #
|
||||
// # # # # # # # # # # #
|
||||
// ###### # # ###### # # # # ###### ####
|
||||
//
|
||||
|
||||
/* Endpoint direction check macros */
|
||||
#define IS_EP_BULK(ep) ((ep)->bmAttributes == USB_ENDPOINT_XFER_BULK ? 1 : 0)
|
||||
#define IS_EP_BULK_IN(ep) (IS_EP_BULK(ep) && ((ep)->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN)
|
||||
#define IS_EP_BULK_OUT(ep) (IS_EP_BULK(ep) && ((ep)->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT)
|
||||
|
||||
/* Version Information */
|
||||
#define DRIVER_VERSION "V31L01"
|
||||
//#define DRIVER_VERSION "V34L77"
|
||||
#define DRIVER_AUTHOR "Fujitsu Frontech Ltd. Modified by Carl Goodwin (Dispension Inc)"
|
||||
#define DRIVER_DESC "FUJITSU PalmSecure Sensor driver for Ubuntu22"
|
||||
|
||||
/* minor number defines */
|
||||
|
||||
|
||||
/* Waiting time for sensor confirming. */
|
||||
/* Change this value when the time-out happens before the sensor confirming ends. */
|
||||
#define SENSOR_CONFIRMED_WAIT_TIME 1
|
||||
|
||||
/* Read timeouts -- R_NAK_TIMEOUT * R_EXPIRE = Number of seconds */
|
||||
#define R_NAK_TIMEOUT (50) /* Default number of X seconds to wait */
|
||||
#define R_EXPIRE 1 /* Number of attempts to wait X seconds */
|
||||
|
||||
/* Write timeouts */
|
||||
#define W_NAK_TIMEOUT (50) /* Default number of X seconds to wait */
|
||||
|
||||
/* Ioctl timeouts */
|
||||
#define C_NAK_TIMEOUT (100) /* Default number of X seconds to wait */
|
||||
|
||||
/* Allocate buffer byte size */
|
||||
#define IBUF_SIZE 32768
|
||||
#define OBUF_SIZE 4096
|
||||
|
||||
/* Flag of sensor state of use */
|
||||
#define SENSOR_NOT_CONFIRMED 0 /* Sensor is not used or is in phase of confirming. */
|
||||
#define SENSOR_CONFIRMED 1 /* Sensor is now used */
|
||||
|
||||
|
||||
|
||||
|
||||
static DEFINE_MUTEX(fjveincam_mutex); /* Initializes to unlocked */
|
||||
|
||||
|
||||
//
|
||||
static void dbg(int line, char * func, char * remark, unsigned long num){
|
||||
pr_notice(">>>>>>>>>>>>>>.. USB Driver: %s @ %d (%s): %s = %lu", __FILE__, line, remark, func, num);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// ####### ### # #######
|
||||
// # # # #
|
||||
// # # # #
|
||||
// ##### # # #####
|
||||
// # # # #
|
||||
// # # # #
|
||||
// # ### ####### #######
|
||||
//
|
||||
// @func
|
||||
static int usb_fjveincam_open(struct inode *inode, struct file *file)
|
||||
{
|
||||
|
||||
struct fjveincam *dev;
|
||||
struct usb_interface *interface;
|
||||
int subminor;
|
||||
int retval = 0;
|
||||
long wait;
|
||||
|
||||
// does this even run?
|
||||
dbg(__LINE__, "usb_fjveincam_open", "********* fjveincam open", ENODEV);
|
||||
pr_notice("**************81 FFFFFFFFFUCK");
|
||||
return -ENODEV;
|
||||
|
||||
|
||||
mutex_lock(&fjveincam_mutex);
|
||||
|
||||
subminor = iminor(inode);
|
||||
|
||||
dbg(__LINE__, "usb_fjveincam_open", "open", subminor);
|
||||
|
||||
interface = usb_find_interface(&usb_fjveincam_driver, subminor);
|
||||
if (!interface) {
|
||||
pr_err("%s - error, can't find device for minor %d\n",
|
||||
__func__, subminor);
|
||||
retval = -ENODEV;
|
||||
goto exit;
|
||||
}
|
||||
|
||||
dev = usb_get_intfdata(interface);
|
||||
if ((!dev) || (!dev->udev)) {
|
||||
dbg(__LINE__, "usb_fjveincam_open", "device not present", 0L);
|
||||
retval = -ENODEV;
|
||||
goto exit;
|
||||
}
|
||||
|
||||
mutex_lock(&(dev->io_mutex));
|
||||
|
||||
if (dev->open_count) {
|
||||
/* Another process has opened. */
|
||||
if (dev->confirmed == SENSOR_CONFIRMED) {
|
||||
/* The sensor was confirmed. */
|
||||
dbg(__LINE__, "usb_fjveincam_open", "device already open", 0L);
|
||||
retval = -EBUSY;
|
||||
goto exit;
|
||||
}
|
||||
|
||||
mutex_unlock(&(dev->io_mutex));
|
||||
|
||||
/* Wait until the sensor is confirmed or closed, because another process is open. */
|
||||
/* Change SENSOR_CONFIRMED_WAIT_TIME value when the time-out happens before the sensor is confirmed. */
|
||||
wait = wait_event_interruptible_timeout(dev->wait_q,
|
||||
(!dev->open_count)||(dev->confirmed==SENSOR_CONFIRMED),
|
||||
SENSOR_CONFIRMED_WAIT_TIME);
|
||||
|
||||
mutex_lock(&(dev->io_mutex));
|
||||
if (wait == 0) {
|
||||
/* Time-out happens before the sensor is confirmed. */
|
||||
dbg(__LINE__, "usb_fjveincam_open", "preconfirmation timeout", 0L);
|
||||
dev->o_timeout++;
|
||||
dev->confirmed=SENSOR_CONFIRMED;
|
||||
retval = -EBUSY;
|
||||
goto exit;
|
||||
}
|
||||
else if (dev->confirmed==SENSOR_CONFIRMED) {
|
||||
/* Another process completed the sensor confirming, and started the use of the sensor. */
|
||||
dbg(__LINE__, "usb_fjveincam_open", "device already open", 0L);
|
||||
retval = -EBUSY;
|
||||
goto exit;
|
||||
}
|
||||
else if(wait == -ERESTARTSYS) {
|
||||
retval = -ERESTARTSYS;
|
||||
goto exit;
|
||||
}
|
||||
/* else {
|
||||
// Another process closed the sensor.
|
||||
} */
|
||||
}
|
||||
|
||||
init_waitqueue_head(&dev->wait_q);
|
||||
dev->open_count = 1;
|
||||
file->private_data = dev; /* Used by the read and write methods */
|
||||
|
||||
exit:
|
||||
mutex_unlock(&(dev->io_mutex));
|
||||
mutex_unlock(&fjveincam_mutex);
|
||||
|
||||
return retval;
|
||||
|
||||
}
|
||||
|
||||
// @func
|
||||
static int usb_fjveincam_release(struct inode *inode, struct file *file)
|
||||
{
|
||||
struct fjveincam *dev = file->private_data;
|
||||
mutex_lock(&(dev->io_mutex));
|
||||
|
||||
dev->confirmed = SENSOR_NOT_CONFIRMED;
|
||||
dev->open_count = 0;
|
||||
file->private_data = NULL;
|
||||
|
||||
if (!dev->udev) {
|
||||
/* The device was unplugged while open - need to clean up */
|
||||
dbg(__LINE__, "funczz", "device was unplugged while open .. tidying up", 0L);
|
||||
|
||||
mutex_unlock(&(dev->io_mutex));
|
||||
kfree(dev->ibuf);
|
||||
kfree(dev->obuf);
|
||||
kfree(dev);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
wake_up_interruptible(&dev->wait_q); /* Wake_up the process waiting in open() function. */
|
||||
dbg(__LINE__, "usb_fjveincam_close", "closing...", 0L);
|
||||
mutex_unlock(&(dev->io_mutex));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// ### # #######
|
||||
// # # # #
|
||||
// # # # #
|
||||
// # # # #
|
||||
// # # # #
|
||||
// # # # #
|
||||
// ### # #######
|
||||
//
|
||||
// @func
|
||||
static ssize_t usb_fjveincam_read(struct file *file, char *buffer,
|
||||
size_t count, loff_t *ppos)
|
||||
{
|
||||
struct fjveincam *dev = file->private_data;
|
||||
struct usb_device *udev;
|
||||
|
||||
ssize_t bytes_read = 0; /* Overall count of bytes_read */
|
||||
ssize_t ret = 0;
|
||||
|
||||
int subminor;
|
||||
int partial; /* Number of bytes successfully read */
|
||||
int this_read; /* Max number of bytes to read */
|
||||
int result;
|
||||
int r_expire = R_EXPIRE;
|
||||
|
||||
char *ibuf;
|
||||
struct timespec64 CURRENT_TIME;
|
||||
|
||||
ktime_get_ts64(&CURRENT_TIME);
|
||||
|
||||
mutex_lock(&(dev->io_mutex));
|
||||
|
||||
subminor = dev->subminor;
|
||||
|
||||
udev = dev->udev;
|
||||
if (!udev) {
|
||||
/* The device was unplugged before the file was released */
|
||||
dbg(__LINE__, "usb_fjveincam_read", "device was unplugged", 0L);
|
||||
ret = -ENODEV;
|
||||
goto out_error;
|
||||
}
|
||||
|
||||
ibuf = dev->ibuf;
|
||||
|
||||
file->f_path.dentry->d_inode->i_atime = CURRENT_TIME;
|
||||
while (count > 0) {
|
||||
if (signal_pending(current)) {
|
||||
dbg(__LINE__, "usb_fjveincam_read", "signal detected", 0L);
|
||||
ret = -ERESTARTSYS;
|
||||
break;
|
||||
}
|
||||
|
||||
this_read = (count >= IBUF_SIZE) ? IBUF_SIZE : count;
|
||||
|
||||
result = usb_bulk_msg(udev, usb_rcvbulkpipe(udev, dev->bulk_in_ep), ibuf, this_read, &partial, R_NAK_TIMEOUT);
|
||||
//dbg("%s: minor:%d result:%d this_read:%d partial:%d count:%d", "funczz", subminor, result, this_read, partial, count);
|
||||
dbg(__LINE__, "usb_fjveincam_read", "partial read", 0L);
|
||||
|
||||
dev->r_lasterr = result;
|
||||
if (result == -ETIMEDOUT) { /* NAK */
|
||||
dev->r_error++;
|
||||
if (!partial) { /* No data */
|
||||
if (--r_expire <= 0) { /* Give it up */
|
||||
dbg(__LINE__, "usb_fjveincam_read", "excessive NAKs", 0L);
|
||||
ret = result;
|
||||
break;
|
||||
} else { /* Keep trying to read data */
|
||||
schedule_timeout(R_NAK_TIMEOUT);
|
||||
continue;
|
||||
}
|
||||
} else { /* Timeout w/ some data */
|
||||
goto data_recvd;
|
||||
}
|
||||
}
|
||||
|
||||
if (result == -EPIPE) { /* No hope */
|
||||
dev->r_error++;
|
||||
if(usb_clear_halt(udev, dev->bulk_in_ep)) {
|
||||
dbg(__LINE__, "usb_fjveincam_read", "failed to clear endpoint halt condition", 0L);
|
||||
}
|
||||
ret = result;
|
||||
break;
|
||||
} else if ((result < 0) && (result != EREMOTEIO)) {
|
||||
dev->r_error++;
|
||||
dbg(__LINE__, "usb_fjveincam_read", "an error occurred", 0L);
|
||||
ret = -EIO;
|
||||
break;
|
||||
}
|
||||
|
||||
data_recvd:
|
||||
|
||||
if (partial) { /* Data returned */
|
||||
if (copy_to_user(buffer, ibuf, partial)) {
|
||||
dbg(__LINE__, "usb_fjveincam_read", "failed to copy data to user space", 0L);
|
||||
ret = -EFAULT;
|
||||
break;
|
||||
}
|
||||
count -= partial; /* Compensate for short reads */
|
||||
bytes_read += partial; /* Keep tally of what actually was read */
|
||||
buffer += partial;
|
||||
} else {
|
||||
ret = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
out_error:
|
||||
|
||||
dbg(__LINE__, "usb_fjveincam_read", "bytes were read", 0L);
|
||||
|
||||
mutex_unlock(&(dev->io_mutex));
|
||||
|
||||
return ret ? ret : bytes_read;
|
||||
}
|
||||
|
||||
|
||||
// @func
|
||||
static ssize_t usb_fjveincam_write(struct file *file, const char *buffer,
|
||||
size_t count, loff_t *ppos)
|
||||
{
|
||||
struct fjveincam *dev = file->private_data;
|
||||
struct usb_device *udev;
|
||||
|
||||
ssize_t bytes_written = 0; /* Overall count of bytes written */
|
||||
ssize_t ret = 0;
|
||||
|
||||
int subminor;
|
||||
int this_write; /* Number of bytes to write */
|
||||
int partial; /* Number of bytes successfully written */
|
||||
int result = 0;
|
||||
|
||||
char *obuf;
|
||||
struct timespec64 CURRENT_TIME;
|
||||
|
||||
ktime_get_ts64(&CURRENT_TIME);
|
||||
mutex_lock(&(dev->io_mutex));
|
||||
|
||||
subminor = dev->subminor;
|
||||
|
||||
udev = dev->udev;
|
||||
if (!udev) {
|
||||
dbg(__LINE__, "usb_fjveincam_write", "device was unplugged", 0L);
|
||||
ret = -ENODEV;
|
||||
goto out_error;
|
||||
}
|
||||
|
||||
obuf = dev->obuf;
|
||||
file->f_path.dentry->d_inode->i_atime = CURRENT_TIME;
|
||||
|
||||
while (count > 0) {
|
||||
if (signal_pending(current)) {
|
||||
ret = -ERESTARTSYS;
|
||||
break;
|
||||
}
|
||||
|
||||
this_write = (count >= OBUF_SIZE) ? OBUF_SIZE : count;
|
||||
|
||||
if (copy_from_user(dev->obuf, buffer, this_write)) {
|
||||
ret = -EFAULT;
|
||||
break;
|
||||
}
|
||||
|
||||
result = usb_bulk_msg(udev,usb_sndbulkpipe(udev, dev->bulk_out_ep), obuf, this_write, &partial, W_NAK_TIMEOUT);
|
||||
dbg(__LINE__, "usb_fjveincam_write", "bulk data sent", 0L);
|
||||
|
||||
dev->w_lasterr = result;
|
||||
if (result == -ETIMEDOUT) { /* NAK */
|
||||
dbg(__LINE__, "usb_fjveincam_write", "excess NAKs", 0L);
|
||||
dev->w_error++;
|
||||
ret = result;
|
||||
break;
|
||||
} else if (result < 0) { /* We should not get any I/O errors */
|
||||
dbg(__LINE__, "usb_fjveincam_write", "error detected", 0L);
|
||||
dev->w_error++;
|
||||
ret = -EIO;
|
||||
break;
|
||||
}
|
||||
|
||||
if (partial != this_write) { /* Unable to write all contents of obuf */
|
||||
dev->w_error++;
|
||||
ret = -EIO;
|
||||
break;
|
||||
}
|
||||
|
||||
if (partial) { /* Data written */
|
||||
buffer += partial;
|
||||
count -= partial;
|
||||
bytes_written += partial;
|
||||
} else { /* No data written */
|
||||
ret = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
out_error:
|
||||
|
||||
mutex_unlock(&(dev->io_mutex));
|
||||
|
||||
return ret ? ret : bytes_written;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// ### ####### ##### ####### #
|
||||
// # # # # # # #
|
||||
// # # # # # #
|
||||
// # # # # # #
|
||||
// # # # # # #
|
||||
// # # # # # # #
|
||||
// ### ####### ##### # #######
|
||||
//
|
||||
// @func
|
||||
static long usb_fjveincam_unlocked_ioctl(struct file *file, uint cmd, ulong arg)
|
||||
{
|
||||
struct fjveincam *dev = file->private_data;
|
||||
struct usb_device *udev;
|
||||
char obuf[256];
|
||||
int subminor;
|
||||
int retval = 0;
|
||||
return -99;
|
||||
|
||||
memset(&obuf,0,sizeof(obuf));
|
||||
printk(">>>>>>>>> IOCTL %d\n", cmd);
|
||||
mutex_lock(&(dev->io_mutex));
|
||||
|
||||
subminor = dev->subminor;
|
||||
|
||||
dbg(__LINE__, "usb_fjveincam_ioctl", "ioctl", 0L);
|
||||
|
||||
if (!dev->udev) {
|
||||
dbg(__LINE__, "usb_fjveincam_ioctl", "device was unplugged", 0L);
|
||||
retval = -ENODEV;
|
||||
goto out_error;
|
||||
}
|
||||
|
||||
|
||||
switch (cmd)
|
||||
{
|
||||
case USB_FJVEINCAMV30_IOCTL_CTRLMSG:
|
||||
case USB_FJVEINCAM_IOCTL_CTRLMSG:
|
||||
{
|
||||
struct fjveincam_cmsg user_cmsg;
|
||||
struct {
|
||||
struct usb_ctrlrequest req;
|
||||
unsigned char *data;
|
||||
} cmsg;
|
||||
int pipe, nb, ret;
|
||||
unsigned char buf[974];
|
||||
dbg(__LINE__, "usb_fjveincam_ioctl", "USB_FJVEINCAM_IOCTL_CTRLMSG", 0L);
|
||||
udev = dev->udev;
|
||||
|
||||
dbg(__LINE__, "usb_fjveincam_ioctl", "dealing with an ioctl", 0L);
|
||||
|
||||
if (copy_from_user(&user_cmsg, (void *)arg, sizeof(user_cmsg))) {
|
||||
retval = -EFAULT;
|
||||
break;
|
||||
}
|
||||
cmsg.req.bRequestType = user_cmsg.req.bRequestType;
|
||||
cmsg.req.bRequest = user_cmsg.req.bRequest;
|
||||
cmsg.req.wValue = user_cmsg.req.wValue;
|
||||
cmsg.req.wIndex = user_cmsg.req.wIndex;
|
||||
cmsg.req.wLength = user_cmsg.req.wLength;
|
||||
cmsg.data = user_cmsg.data;
|
||||
|
||||
nb = cmsg.req.wLength;
|
||||
|
||||
if (nb > sizeof(buf)) {
|
||||
retval = -EINVAL;
|
||||
break;
|
||||
}
|
||||
|
||||
if ((cmsg.req.bRequestType & 0x80) == 0) {
|
||||
pipe = usb_sndctrlpipe(udev, 0);
|
||||
if (nb > 0 && copy_from_user(buf, cmsg.data, nb)) {
|
||||
retval = -EFAULT;
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
pipe = usb_rcvctrlpipe(udev, 0);
|
||||
}
|
||||
|
||||
ret = usb_control_msg(udev, pipe,
|
||||
cmsg.req.bRequest,
|
||||
cmsg.req.bRequestType,
|
||||
cmsg.req.wValue,
|
||||
cmsg.req.wIndex,
|
||||
buf, nb, C_NAK_TIMEOUT);
|
||||
|
||||
dbg(__LINE__, "usb_fjveincam_ioctl", "request", 0L);
|
||||
|
||||
sprintf(obuf,"%s: minor:%d request result:%d cmd[%02X:%04X:%04X:%04X] rsp[%02X:%02X:%02X:%02X]",
|
||||
"funczz", subminor, ret,
|
||||
cmsg.req.bRequest, cmsg.req.wValue, cmsg.req.wIndex, cmsg.req.wLength,
|
||||
buf[0], buf[1], buf[2], buf[3]);
|
||||
dbg(__LINE__, "usb_fjveincam_ioctl", obuf, 0L);
|
||||
|
||||
|
||||
if (ret < 0) {
|
||||
dbg(__LINE__, "usb_fjveincam_ioctl", "error detected", 0L);
|
||||
retval = -EIO;
|
||||
break;
|
||||
}
|
||||
|
||||
if (nb < ret) {
|
||||
ret = nb;
|
||||
}
|
||||
if (nb > 0 && (cmsg.req.bRequestType & 0x80) && copy_to_user(cmsg.data, buf, ret)) {
|
||||
retval = -EFAULT;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case USB_FJVEINCAMV30_IOCTL_CHECK:
|
||||
case USB_FJVEINCAM_IOCTL_CHECK:
|
||||
dbg(__LINE__, "usb_fjveincam_ioctl", "USB_FJVEINCAM_IOCTL_CHECK", 0L);
|
||||
break;
|
||||
|
||||
/* Notification of the end of sensor confirming. */
|
||||
case USB_FJVEINCAMV30_IOCTL_CONFIRM:
|
||||
case USB_FJVEINCAM_IOCTL_CONFIRM:
|
||||
{
|
||||
dbg(__LINE__, "usb_fjveincam_ioctl", "USB_FJVEINCAM_IOCTL_CONFIRM", 0L);
|
||||
dev->confirmed = SENSOR_CONFIRMED; /* Sensor confirming was completed, and started the use of the sensor. */
|
||||
wake_up_interruptible(&dev->wait_q); /* Wake_up the process waiting in open() function. */
|
||||
dbg(__LINE__, "usb_fjveincam_ioctl", "sensor was checked", 0L);
|
||||
break;
|
||||
}
|
||||
|
||||
case USB_FJVEINCAMV30_IOCTL_INFO:
|
||||
case USB_FJVEINCAM_IOCTL_INFO:
|
||||
{
|
||||
struct fjveincam_info info;
|
||||
dbg(__LINE__, "usb_fjveincam_ioctl", "USB_FJVEINCAM_IOCTL_INFO", 0L);
|
||||
|
||||
info.magic = FJPV_MAGIC; /* Magic number for indicating Fujitsu Palmsecure sensor driver. */
|
||||
info.minor = subminor;
|
||||
info.o_timeout = dev->o_timeout;
|
||||
info.r_error = dev->r_error;
|
||||
info.r_lasterr = dev->r_lasterr;
|
||||
info.w_error = dev->w_error;
|
||||
info.w_lasterr = dev->w_lasterr;
|
||||
strncpy((char*)info.version, DRIVER_VERSION, sizeof(info.version));
|
||||
if (copy_to_user((void *)arg, &info, sizeof(info)))
|
||||
retval = -EFAULT;
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
dbg(__LINE__, "usb_fjveincam_ioctl", "invalid request code", 0L);
|
||||
retval = -ENOIOCTLCMD;
|
||||
break;
|
||||
}
|
||||
|
||||
out_error:
|
||||
|
||||
mutex_unlock(&(dev->io_mutex));
|
||||
|
||||
dbg(__LINE__, "usb_fjveincam_ioctl", "OK...", 0L);
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// @config
|
||||
static struct file_operations usb_fjveincam_fops = {
|
||||
.owner = THIS_MODULE,
|
||||
.open = usb_fjveincam_open,
|
||||
.release = usb_fjveincam_release,
|
||||
.read = usb_fjveincam_read,
|
||||
.write = usb_fjveincam_write,
|
||||
.unlocked_ioctl = usb_fjveincam_unlocked_ioctl,
|
||||
};
|
||||
|
||||
|
||||
// @config
|
||||
static struct usb_class_driver fjveincam_class = {
|
||||
.name = "usb/fjveincam%d",
|
||||
.fops = &usb_fjveincam_fops,
|
||||
.minor_base = USB_subminor_BASE,
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
//
|
||||
// ##### ##### #### ##### ######
|
||||
// # # # # # # # # #
|
||||
// # # # # # # ##### #####
|
||||
// ##### ##### # # # # #
|
||||
// # # # # # # # #
|
||||
// # # # #### ##### ######
|
||||
//
|
||||
// Runs when the *device* is plugged in
|
||||
// @func
|
||||
static int usb_fjveincam_probe(struct usb_interface *intf,
|
||||
const struct usb_device_id *id)
|
||||
{
|
||||
struct usb_device *udev = interface_to_usbdev(intf);
|
||||
struct fjveincam *dev;
|
||||
struct usb_host_interface *interface;
|
||||
struct usb_endpoint_descriptor *endpoint;
|
||||
|
||||
int ep_cnt;
|
||||
int retval;
|
||||
|
||||
char have_bulk_in, have_bulk_out;
|
||||
char name[20];
|
||||
char buf[128];
|
||||
|
||||
|
||||
// Dump usb_interface structure
|
||||
pr_info("Dumping usb_interface structure:\n");
|
||||
pr_info(" Interface number: %d\n", intf->cur_altsetting->desc.bInterfaceNumber);
|
||||
pr_info(" Interface class: 0x%02x\n", intf->cur_altsetting->desc.bInterfaceClass);
|
||||
// Add more fields as needed
|
||||
|
||||
// Dump usb_device_id structure
|
||||
pr_info("Dumping usb_device_id structure:\n");
|
||||
pr_info(" Matched vendor ID: 0x%04x\n", id->idVendor);
|
||||
pr_info(" Matched product ID: 0x%04x\n", id->idProduct);
|
||||
// Add more fields as needed
|
||||
|
||||
memset(&buf,0,sizeof(buf));
|
||||
dbg(__LINE__, "usb_fjveincam_probe", "probed; [device id]", 0L);
|
||||
|
||||
sprintf(buf, "vendor id 0x%x, device id 0x%x, portnum:%d minor_base:%d",
|
||||
udev->descriptor.idVendor, udev->descriptor.idProduct,
|
||||
udev->portnum, USB_subminor_BASE);
|
||||
dbg(__LINE__, "usb_fjveincam_probe", buf, 0L);
|
||||
|
||||
|
||||
/*
|
||||
* After this point we can be a little noisy about what we are trying to
|
||||
* configure.
|
||||
*/
|
||||
|
||||
if (udev->descriptor.bNumConfigurations != 1) {
|
||||
dbg(__LINE__, "funczz", "only one device configuration is supported", 0L);
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
/*
|
||||
* Start checking for two bulk endpoints.
|
||||
*/
|
||||
|
||||
interface = &intf->altsetting[0];
|
||||
|
||||
dbg(__LINE__, "usb_fjveincam_probe", "endpoints", interface->desc.bNumEndpoints);
|
||||
|
||||
if (interface->desc.bNumEndpoints != 2) {
|
||||
dbg(__LINE__, "usb_fjveincam_probe", "**ERROR** endpoint count", interface->desc.bNumEndpoints);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
ep_cnt = have_bulk_in = have_bulk_out = 0;
|
||||
|
||||
while (ep_cnt < interface->desc.bNumEndpoints) {
|
||||
endpoint = &interface->endpoint[ep_cnt].desc;
|
||||
|
||||
if (!have_bulk_in && IS_EP_BULK_IN(endpoint)) {
|
||||
ep_cnt++;
|
||||
have_bulk_in = endpoint->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
|
||||
dbg(__LINE__, "usb_fjveincam_probe", "bulk in", 0L);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!have_bulk_out && IS_EP_BULK_OUT(endpoint)) {
|
||||
ep_cnt++;
|
||||
have_bulk_out = endpoint->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
|
||||
dbg(__LINE__, "usb_fjveincam_probe", "bulk out", 0L);
|
||||
continue;
|
||||
}
|
||||
|
||||
dbg(__LINE__, "usb_fjveincam_probe", "**ERROR** not a bulk endpoint", 0L);
|
||||
return -EIO; /* Shouldn't ever get here unless we have something weird */
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform a quick check to make sure that everything worked as it
|
||||
* should have.
|
||||
*/
|
||||
|
||||
if (!have_bulk_in || !have_bulk_out) {
|
||||
dbg(__LINE__, "usb_fjveincam_probe", "**ERROR** bulk in/out both required", 0L);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
/*
|
||||
* Determine a minor number and initialize the structure associated
|
||||
* with it.
|
||||
*/
|
||||
if (!(dev = kzalloc (sizeof (struct fjveincam), GFP_KERNEL))) {
|
||||
dbg(__LINE__, "usb_fjveincam_probe", "**ERROR** insufficient memory", 0L);
|
||||
return -ENOMEM;
|
||||
}
|
||||
mutex_init(&(dev->io_mutex)); /* Initializes to unlocked */
|
||||
|
||||
/* Ok, now initialize all the relevant values */
|
||||
if (!(dev->obuf = (char *)kmalloc(OBUF_SIZE, GFP_KERNEL))) {
|
||||
dbg(__LINE__, "usb_fjveincam_probe", "**ERROR** insufficient output memory", 0L);
|
||||
kfree(dev);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
if (!(dev->ibuf = (char *)kmalloc(IBUF_SIZE, GFP_KERNEL))) {
|
||||
dbg(__LINE__, "usb_fjveincam_probe", "**ERROR** insufficient input memory", 0L);
|
||||
kfree(dev->obuf);
|
||||
kfree(dev);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
usb_get_dev(udev);
|
||||
dev->bulk_in_ep = have_bulk_in;
|
||||
dev->bulk_out_ep = have_bulk_out;
|
||||
dev->udev = udev;
|
||||
dev->open_count = 0;
|
||||
dev->confirmed = SENSOR_NOT_CONFIRMED;
|
||||
|
||||
usb_set_intfdata(intf, dev);
|
||||
|
||||
retval = usb_register_dev(intf, &fjveincam_class);
|
||||
if (retval) {
|
||||
dbg(__LINE__, "usb_fjveincam_probe", "**ERROR** unable to get a minor number", 0L);
|
||||
usb_set_intfdata(intf, NULL);
|
||||
kfree(dev->ibuf);
|
||||
kfree(dev->obuf);
|
||||
kfree(dev);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
dbg(__LINE__, "usb_fjveincam_probe", "have a minor", intf->minor);
|
||||
dev->subminor = intf->minor;
|
||||
|
||||
snprintf(name, sizeof(name), fjveincam_class.name,
|
||||
intf->minor - fjveincam_class.minor_base);
|
||||
dev_info(&intf->dev, "USB PalmVeinCam device now attached to %s\n", name);
|
||||
|
||||
dbg(__LINE__, "usb_fjveincam_probe: have a name", name, 0L);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// ##### ####### # # # #
|
||||
// # # # # ## # ## #
|
||||
// # # # # # # # # #
|
||||
// # # # # # # # # #
|
||||
// # # # # # # # # #
|
||||
// # # # # # ## # ##
|
||||
// ##### ####### # # # #
|
||||
//
|
||||
// Runs when the *device* is disconnected, or the module is unloaded
|
||||
// @func
|
||||
static void usb_fjveincam_disconnect(struct usb_interface *interface)
|
||||
{
|
||||
struct fjveincam *dev = usb_get_intfdata(interface);
|
||||
int subminor = interface->minor;
|
||||
|
||||
usb_set_intfdata(interface, NULL);
|
||||
|
||||
/* give back our minor */
|
||||
usb_deregister_dev (interface, &fjveincam_class);
|
||||
|
||||
mutex_lock(&fjveincam_mutex); /* If there is a process in open(), wait for return. */
|
||||
mutex_lock(&(dev->io_mutex));
|
||||
|
||||
dev_info(&interface->dev, "USB PalmVeinCam #%d now disconnected\n", (subminor - fjveincam_class.minor_base));
|
||||
|
||||
usb_driver_release_interface(&usb_fjveincam_driver,
|
||||
dev->udev->actconfig->interface[0]);
|
||||
|
||||
if (dev->open_count) {
|
||||
/* The device is still open - cleanup must be delayed */
|
||||
dbg(__LINE__, "usb_fjveincam_disconnect", "device was unplugged while open", 0L);
|
||||
dev->udev = 0;
|
||||
mutex_unlock(&(dev->io_mutex));
|
||||
mutex_unlock(&fjveincam_mutex);
|
||||
return;
|
||||
}
|
||||
|
||||
dbg(__LINE__, "usb_fjveincam_disconnect", "deallocating...", 0L);
|
||||
|
||||
mutex_unlock(&(dev->io_mutex));
|
||||
mutex_unlock(&fjveincam_mutex);
|
||||
|
||||
kfree(dev->ibuf);
|
||||
kfree(dev->obuf);
|
||||
kfree(dev);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// ###### ####### ##### ### ##### ####### ### ###### # #
|
||||
// # # # # # # # # # ### # # ## #
|
||||
// # # # # # # # # # # # # #
|
||||
// ###### ##### # #### # ##### # # ###### # # #
|
||||
// # # # # # # # # # # # # #
|
||||
// # # # # # # # # # # # # ##
|
||||
// # # ####### ##### ### ##### # # # # #
|
||||
//
|
||||
// Runs when the *module* is loaded
|
||||
// @func
|
||||
static int __init usb_fjveincam_init(void){
|
||||
int result;
|
||||
|
||||
// register this driver with the USB subsystem - fires on driver module insmod
|
||||
dbg(__LINE__, "usb_fjveincam_init", "USB registration with ioctl %lu", USB_FJVEINCAM_IOCTL_INFO);
|
||||
result = usb_register(&usb_fjveincam_driver);
|
||||
if (result){
|
||||
dbg(__LINE__, "usb_fjveincam_init", "USB registration failed", 0L);
|
||||
}
|
||||
dbg(__LINE__, "usb_fjveincam_init", "registration complete", result);
|
||||
return result;
|
||||
}
|
||||
// This runs when the *module* is unloaded
|
||||
// @func
|
||||
static void __exit usb_fjveincam_exit(void)
|
||||
{
|
||||
// deregister this driver with the USB subsystem - fires on driver module rmmod
|
||||
dbg(__LINE__, "usb_fjveincam_exit", "USB de-registration with ioctl %lu", USB_FJVEINCAM_IOCTL_INFO);
|
||||
usb_deregister(&usb_fjveincam_driver);
|
||||
dbg(__LINE__, "usb_fjveincam_exit", "removing the driver", 0L);
|
||||
}
|
||||
module_init(usb_fjveincam_init);
|
||||
module_exit(usb_fjveincam_exit);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// @config
|
||||
static struct usb_driver usb_fjveincam_driver = {
|
||||
.name = "fjveincam",
|
||||
.probe = usb_fjveincam_probe,
|
||||
.disconnect = usb_fjveincam_disconnect,
|
||||
.id_table = fjveincam_table,
|
||||
.no_dynamic_id = 1
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
MODULE_AUTHOR(DRIVER_AUTHOR);
|
||||
MODULE_DESCRIPTION(DRIVER_DESC);
|
||||
MODULE_LICENSE("GPL v2");
|
||||
|
||||
|
||||
Binary file not shown.
@ -31,14 +31,13 @@ __used __section("__versions") = {
|
||||
{ 0xdf85ea06, "usb_deregister" },
|
||||
{ 0xf63cc4cc, "usb_register_driver" },
|
||||
{ 0xa024a396, "usb_clear_halt" },
|
||||
{ 0x6b10bee1, "_copy_to_user" },
|
||||
{ 0xd4afa9de, "usb_control_msg" },
|
||||
{ 0x228fca22, "usb_bulk_msg" },
|
||||
{ 0x13c49cc2, "_copy_from_user" },
|
||||
{ 0x88db9f48, "__check_object_size" },
|
||||
{ 0xa7bfbf2f, "current_task" },
|
||||
{ 0x5e515be6, "ktime_get_ts64" },
|
||||
{ 0x6b10bee1, "_copy_to_user" },
|
||||
{ 0x56470118, "__warn_printk" },
|
||||
{ 0xd4afa9de, "usb_control_msg" },
|
||||
{ 0x88db9f48, "__check_object_size" },
|
||||
{ 0x13c49cc2, "_copy_from_user" },
|
||||
{ 0x656e4a6e, "snprintf" },
|
||||
{ 0x40a9a344, "usb_register_dev" },
|
||||
{ 0x1e3192f4, "usb_get_dev" },
|
||||
@ -46,7 +45,6 @@ __used __section("__versions") = {
|
||||
{ 0xcefb0c9f, "__mutex_init" },
|
||||
{ 0xf35141b2, "kmem_cache_alloc_trace" },
|
||||
{ 0x26087692, "kmalloc_caches" },
|
||||
{ 0x3c3ff9fd, "sprintf" },
|
||||
{ 0xd0da656b, "__stack_chk_fail" },
|
||||
{ 0x92540fbf, "finish_wait" },
|
||||
{ 0x8ddd8aad, "schedule_timeout" },
|
||||
@ -56,13 +54,13 @@ __used __section("__versions") = {
|
||||
{ 0xd9a5ea54, "__init_waitqueue_head" },
|
||||
{ 0x2546aa39, "usb_find_interface" },
|
||||
{ 0x3eeb2322, "__wake_up" },
|
||||
{ 0x5b8239ca, "__x86_return_thunk" },
|
||||
{ 0x37a0cba, "kfree" },
|
||||
{ 0x3213f038, "mutex_unlock" },
|
||||
{ 0x30350852, "usb_driver_release_interface" },
|
||||
{ 0xe6e002cf, "_dev_info" },
|
||||
{ 0x4dfa8d4b, "mutex_lock" },
|
||||
{ 0x665cdc8a, "usb_deregister_dev" },
|
||||
{ 0x5b8239ca, "__x86_return_thunk" },
|
||||
{ 0x92997ed8, "_printk" },
|
||||
{ 0xbdfb6dbb, "__fentry__" },
|
||||
};
|
||||
@ -73,4 +71,4 @@ MODULE_ALIAS("usb:v04C5p1084d*dc*dsc*dp*ic*isc*ip*in*");
|
||||
MODULE_ALIAS("usb:v04C5p125Ad*dc*dsc*dp*ic*isc*ip*in*");
|
||||
MODULE_ALIAS("usb:v04C5p1526d*dc*dsc*dp*ic*isc*ip*in*");
|
||||
|
||||
MODULE_INFO(srcversion, "808114ED83ED71E3194151A");
|
||||
MODULE_INFO(srcversion, "58936B95B19315871CE1C0D");
|
||||
|
||||
Binary file not shown.
Binary file not shown.
@ -74,7 +74,8 @@ virgil
|
||||
version: 21.101.1
|
||||
serial: Unknown
|
||||
slot: AM4
|
||||
size: 3693MHz
|
||||
size: 3492MHz
|
||||
capacity: 3500MHz
|
||||
width: 64 bits
|
||||
clock: 100MHz
|
||||
capabilities: lm fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp x86-64 constant_tsc rep_good acc_power nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs xop skinit wdt lwp fma4 tce nodeid_msr tbm topoext perfctr_core perfctr_nb bpext ptsc mwaitx cpb hw_pstate ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 xsaveopt arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov cpufreq
|
||||
@ -177,6 +178,15 @@ virgil
|
||||
capabilities: usb-2.00 bidirectional
|
||||
configuration: driver=usblp maxpower=2mA speed=480Mbit/s
|
||||
*-usb:1
|
||||
description: Generic USB device
|
||||
product: FUJITSU PalmSecure-F Pro
|
||||
vendor: FUJITSU
|
||||
physical id: 2
|
||||
bus info: usb@4:2
|
||||
version: 2.00
|
||||
capabilities: usb-2.00
|
||||
configuration: driver=fjveincam maxpower=480mA speed=480Mbit/s
|
||||
*-usb:2
|
||||
description: USB hub
|
||||
product: USB 2.0 Hub
|
||||
vendor: Terminus Technology Inc.
|
||||
@ -185,16 +195,7 @@ virgil
|
||||
version: 1.11
|
||||
capabilities: usb-2.00
|
||||
configuration: driver=hub maxpower=100mA slots=4 speed=480Mbit/s
|
||||
*-usb:0
|
||||
description: Generic USB device
|
||||
product: FUJITSU PalmSecure-F Pro
|
||||
vendor: FUJITSU
|
||||
physical id: 1
|
||||
bus info: usb@4:6.1
|
||||
version: 2.00
|
||||
capabilities: usb-2.00
|
||||
configuration: driver=fjveincam maxpower=480mA speed=480Mbit/s
|
||||
*-usb:1
|
||||
*-usb
|
||||
description: Mouse
|
||||
product: USB Receiver
|
||||
vendor: Logitech
|
||||
@ -210,7 +211,7 @@ virgil
|
||||
logical name: /dev/input/event7
|
||||
logical name: /dev/input/mouse1
|
||||
capabilities: usb
|
||||
*-usb:2
|
||||
*-usb:3
|
||||
description: Bluetooth wireless interface
|
||||
product: Bluetooth Radio
|
||||
vendor: Realtek
|
||||
|
||||
46
modules/fjpalmvein/C/fjpalmvein-main/trace.log
Normal file
46
modules/fjpalmvein/C/fjpalmvein-main/trace.log
Normal file
@ -0,0 +1,46 @@
|
||||
execve("./drivertest", ["./drivertest", "2"], 0x7fff1b858518 /* 18 vars */) = 0
|
||||
brk(NULL) = 0x564c7cc47000
|
||||
arch_prctl(0x3001 /* ARCH_??? */, 0x7ffdb60bebb0) = -1 EINVAL (Invalid argument)
|
||||
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f5d63ff9000
|
||||
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
|
||||
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
|
||||
newfstatat(3, "", {st_mode=S_IFREG|0644, st_size=106883, ...}, AT_EMPTY_PATH) = 0
|
||||
mmap(NULL, 106883, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f5d63f9c000
|
||||
close(3) = 0
|
||||
openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
|
||||
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0P\237\2\0\0\0\0\0"..., 832) = 832
|
||||
pread64(3, "\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0"..., 784, 64) = 784
|
||||
pread64(3, "\4\0\0\0 \0\0\0\5\0\0\0GNU\0\2\0\0\300\4\0\0\0\3\0\0\0\0\0\0\0"..., 48, 848) = 48
|
||||
pread64(3, "\4\0\0\0\24\0\0\0\3\0\0\0GNU\0i8\235HZ\227\223\333\350s\360\352,\223\340."..., 68, 896) = 68
|
||||
newfstatat(3, "", {st_mode=S_IFREG|0644, st_size=2216304, ...}, AT_EMPTY_PATH) = 0
|
||||
pread64(3, "\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0"..., 784, 64) = 784
|
||||
mmap(NULL, 2260560, PROT_READ, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f5d63d74000
|
||||
mmap(0x7f5d63d9c000, 1658880, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x28000) = 0x7f5d63d9c000
|
||||
mmap(0x7f5d63f31000, 360448, PROT_READ, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1bd000) = 0x7f5d63f31000
|
||||
mmap(0x7f5d63f89000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x214000) = 0x7f5d63f89000
|
||||
mmap(0x7f5d63f8f000, 52816, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7f5d63f8f000
|
||||
close(3) = 0
|
||||
mmap(NULL, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f5d63fb9000
|
||||
arch_prctl(ARCH_SET_FS, 0x7f5d63fb9740) = 0
|
||||
set_tid_address(0x7f5d63fb9a10) = 6850
|
||||
set_robust_list(0x7f5d63fb9a20, 24) = 0
|
||||
rseq(0x7f5d63fba0e0, 0x20, 0, 0x53053053) = 0
|
||||
mprotect(0x7f5d63f89000, 16384, PROT_READ) = 0
|
||||
mprotect(0x564c7be7b000, 4096, PROT_READ) = 0
|
||||
mprotect(0x7f5d63ff4000, 8192, PROT_READ) = 0
|
||||
prlimit64(0, RLIMIT_STACK, NULL, {rlim_cur=8192*1024, rlim_max=RLIM64_INFINITY}) = 0
|
||||
munmap(0x7f5d63f9c000, 106883) = 0
|
||||
newfstatat(1, "", {st_mode=S_IFCHR|0620, st_rdev=makedev(0x88, 0x4), ...}, AT_EMPTY_PATH) = 0
|
||||
getrandom("\xf8\x81\x10\x55\xbd\x94\x86\xa0", 8, GRND_NONBLOCK) = 8
|
||||
brk(NULL) = 0x564c7cc47000
|
||||
brk(0x564c7cc68000) = 0x564c7cc68000
|
||||
write(1, "#1 /dev/usb/fjveincam2\n", 23) = 23
|
||||
openat(AT_FDCWD, "/dev/usb/fjveincam2", O_RDWR) = -1 ENOENT (No such file or directory)
|
||||
dup(2) = 3
|
||||
fcntl(3, F_GETFL) = 0x2 (flags O_RDWR)
|
||||
newfstatat(3, "", {st_mode=S_IFCHR|0620, st_rdev=makedev(0x88, 0x4), ...}, AT_EMPTY_PATH) = 0
|
||||
write(3, "open: No such file or directory\n", 32) = 32
|
||||
close(3) = 0
|
||||
write(1, "Failed to open USB device /dev/u"..., 50) = 50
|
||||
exit_group(-1) = ?
|
||||
+++ exited with 255 +++
|
||||
BIN
modules/fjpalmvein/C/fjpalmvein-main/working.tgz
Normal file
BIN
modules/fjpalmvein/C/fjpalmvein-main/working.tgz
Normal file
Binary file not shown.
BIN
modules/fjpalmvein/C/silhouette.bmp
Normal file
BIN
modules/fjpalmvein/C/silhouette.bmp
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 301 KiB |
Loading…
Reference in New Issue
Block a user