more refactoring

This commit is contained in:
carl 2023-06-18 09:52:54 -03:00
parent 827b103d2a
commit 8800acc978
73 changed files with 1052 additions and 6111 deletions

View File

@ -1,674 +0,0 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

View File

@ -1,154 +0,0 @@
## What's New
**2021.11**: BlazeFace
| Method | multi scale | Easy | Medium | Hard | Model Size(MB) | Link |
| -------------------- | ----------- | ----- | ------ | ----- | -------------- | ----- |
| BlazeFace | Ture | 88.5 | 85.5 | 73.1 | 0.472 | https://github.com/PaddlePaddle/PaddleDetection |
| BlazeFace-FPN-SSH | Ture | 90.7 | 88.3 | 79.3 | 0.479 | https://github.com/PaddlePaddle/PaddleDetection |
| yolov5-blazeface | True | 90.4 | 88.7 | 78.0 | 0.493 | https://pan.baidu.com/s/1RHp8wa615OuDVhsO-qrMpQ pwd:r3v3 |
| yolov5-blazeface-fpn | True | 90.8 | 89.4 | 79.1 | 0.493 | - |
**2021.08**: Yolov5-face to TensorRT.
Inference time on rtx2080ti.
|Backbone|Pytorch |TensorRT_FP16 |
|:---:|:----:|:----:|
|yolov5n-0.5|11.9ms|2.9ms|
|yolov5n-face|20.7ms|2.5ms|
|yolov5s-face|25.2ms|3.0ms|
|yolov5m-face|61.2ms|3.0ms|
|yolov5l-face|109.6ms|3.6ms|
> Note: (1) Model inference (2) Resolution 640x640
**2021.08**: Add new training dataset [Multi-Task-Facial](https://drive.google.com/file/d/1Pwd6ga06cDjeOX20RSC1KWiT888Q9IpM/view?usp=sharing),improve large face detection.
| Method | Easy | Medium | Hard |
| -------------------- | ----- | ------ | ----- |
| ***YOLOv5s*** | 94.56 | 92.92 | 83.84 |
| ***YOLOv5m*** | 95.46 | 93.87 | 85.54 |
## Introduction
Yolov5-face is a real-time,high accuracy face detection.
![](data/images/yolov5-face-p6.png)
## Performance
Single Scale Inference on VGA resolutionmax side is equal to 640 and scale).
***Large family***
| Method | Backbone | Easy | Medium | Hard | \#Params(M) | \#Flops(G) |
| :------------------ | -------------- | ----- | ------ | ----- | ----------- | ---------- |
| DSFD (CVPR19) | ResNet152 | 94.29 | 91.47 | 71.39 | 120.06 | 259.55 |
| RetinaFace (CVPR20) | ResNet50 | 94.92 | 91.90 | 64.17 | 29.50 | 37.59 |
| HAMBox (CVPR20) | ResNet50 | 95.27 | 93.76 | 76.75 | 30.24 | 43.28 |
| TinaFace (Arxiv20) | ResNet50 | 95.61 | 94.25 | 81.43 | 37.98 | 172.95 |
| SCRFD-34GF(Arxiv21) | Bottleneck Res | 96.06 | 94.92 | 85.29 | 9.80 | 34.13 |
| SCRFD-10GF(Arxiv21) | Basic Res | 95.16 | 93.87 | 83.05 | 3.86 | 9.98 |
| - | - | - | - | - | - | - |
| ***YOLOv5s*** | CSPNet | 94.67 | 92.75 | 83.03 | 7.075 | 5.751 |
| **YOLOv5s6** | CSPNet | 95.48 | 93.66 | 82.8 | 12.386 | 6.280 |
| ***YOLOv5m*** | CSPNet | 95.30 | 93.76 | 85.28 | 21.063 | 18.146 |
| **YOLOv5m6** | CSPNet | 95.66 | 94.1 | 85.2 | 35.485 | 19.773 |
| ***YOLOv5l*** | CSPNet | 95.78 | 94.30 | 86.13 | 46.627 | 41.607 |
| ***YOLOv5l6*** | CSPNet | 96.38 | 94.90 | 85.88 | 76.674 | 45.279 |
***Small family***
| Method | Backbone | Easy | Medium | Hard | \#Params(M) | \#Flops(G) |
| -------------------- | --------------- | ----- | ------ | ----- | ----------- | ---------- |
| RetinaFace (CVPR20 | MobileNet0.25 | 87.78 | 81.16 | 47.32 | 0.44 | 0.802 |
| FaceBoxes (IJCB17) | | 76.17 | 57.17 | 24.18 | 1.01 | 0.275 |
| SCRFD-0.5GF(Arxiv21) | Depth-wise Conv | 90.57 | 88.12 | 68.51 | 0.57 | 0.508 |
| SCRFD-2.5GF(Arxiv21) | Basic Res | 93.78 | 92.16 | 77.87 | 0.67 | 2.53 |
| - | - | - | - | - | - | - |
| ***YOLOv5n*** | ShuffleNetv2 | 93.74 | 91.54 | 80.32 | 1.726 | 2.111 |
| ***YOLOv5n-0.5*** | ShuffleNetv2 | 90.76 | 88.12 | 73.82 | 0.447 | 0.571 |
## Pretrained-Models
| Name | Easy | Medium | Hard | FLOPs(G) | Params(M) | Link |
| ----------- | ----- | ------ | ----- | -------- | --------- | ------------------------------------------------------------ |
| yolov5n-0.5 | 90.76 | 88.12 | 73.82 | 0.571 | 0.447 | Link: https://pan.baidu.com/s/1UgiKwzFq5NXI2y-Zui1kiA pwd: s5ow, https://drive.google.com/file/d/1XJ8w55Y9Po7Y5WP4X1Kg1a77ok2tL_KY/view?usp=sharing |
| yolov5n | 93.61 | 91.52 | 80.53 | 2.111 | 1.726 | Link: https://pan.baidu.com/s/1xsYns6cyB84aPDgXB7sNDQ pwd: lw9j,https://drive.google.com/file/d/18oenL6tjFkdR1f5IgpYeQfDFqU4w3jEr/view?usp=sharing |
| yolov5s | 94.33 | 92.61 | 83.15 | 5.751 | 7.075 | Link: https://pan.baidu.com/s/1fyzLxZYx7Ja1_PCIWRhxbw Link: eq0q,https://drive.google.com/file/d/1zxaHeLDyID9YU4-hqK7KNepXIwbTkRIO/view?usp=sharing |
| yolov5m | 95.30 | 93.76 | 85.28 | 18.146 | 21.063 | Link: https://pan.baidu.com/s/1oePvd2K6R4-gT0g7EERmdQ pwd: jmtk, https://drive.google.com/file/d/1Sx-KEGXSxvPMS35JhzQKeRBiqC98VDDI |
| yolov5l | 95.78 | 94.30 | 86.13 | 41.607 | 46.627 | Link: https://pan.baidu.com/s/11l4qSEgA2-c7e8lpRt8iFw pwd: 0mq7, https://drive.google.com/file/d/16F-3AjdQBn9p3nMhStUxfDNAE_1bOF_r |
## Data preparation
1. Download WIDERFace datasets.
2. Download annotation files from [google drive](https://drive.google.com/file/d/1tU_IjyOwGQfGNUvZGwWWM4SwxKp2PUQ8/view?usp=sharing).
```shell
python3 train2yolo.py
python3 val2yolo.py
```
## Training
```shell
CUDA_VISIBLE_DEVICES="0,1,2,3" python3 train.py --data data/widerface.yaml --cfg models/yolov5s.yaml --weights 'pretrained models'
```
## WIDERFace Evaluation
```shell
python3 test_widerface.py --weights 'your test model' --img-size 640
cd widerface_evaluate
python3 evaluation.py
```
#### Test
![](data/images/result.jpg)
#### Android demo
https://github.com/FeiGeChuanShu/ncnn_Android_face/tree/main/ncnn-android-yolov5_face
#### opencv dnn demo
https://github.com/hpc203/yolov5-face-landmarks-opencv-v2
#### References
https://github.com/ultralytics/yolov5
https://github.com/DayBreak-u/yolo-face-with-landmark
https://github.com/xialuxi/yolov5_face_landmark
https://github.com/biubug6/Pytorch_Retinaface
https://github.com/deepinsight/insightface
#### Citation
- If you think this work is useful for you, please cite
@article{YOLO5Face,
title = {YOLO5Face: Why Reinventing a Face Detector},
author = {Delong Qi and Weijun Tan and Qi Yao and Jingfeng Liu},
booktitle = {ArXiv preprint ArXiv:2105.12931},
year = {2021}
}
#### Main Contributors
https://github.com/derronqi
https://github.com/changhy666
https://github.com/bobo0810

View File

@ -1,40 +0,0 @@
## DISPENSION
## INTOXIVISION PROJECT - YOLOV5-FACE
## JANUARY 1, 2022
## Lucas Wan (lucas.wan@dal.ca)
**TO RUN**
Ensure that all required packages are installed (see requirements.txt)
python3 detect_face.py --image "/image-location"
Can edit detect_face to update write location.
**INFO**
Uses pretrained model: yolov5m6_face. This model has the best recorded accuracy.
Landmarks output gives X Y coordinates of [Left Eye, Right Eye, Nose, Left Mouth, Right Mouth, Left Inner Eyebrow, Right Inner Eyebrow].
X = 0 is left of image (right = positive), Y = 0 is top of image (down = positive). X and Y range from [0 , 1].
Location of eyebrows are calculated from eye locations based on average distances between pupils (63mm) and between pupil to top of eyebrow (25mm).
Note that is folder only include files that are required for running the pretrained model (can not train a new model).
**REFERENCES**
https://github.com/ultralytics/yolov5
https://github.com/deepcam-cn/yolov5-face
https://www.techrxiv.org/articles/preprint/TFW_Annotated_Thermal_Faces_in_the_Wild_Dataset/17004538
**TO DO**
Combine landmark location information from multiple images (obtain average from burst of frames).
Identify central person (currently only outputting landmarks for 1 person - could be person off to the side).
Determine which packages in requirements.txt can be omitted.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 235 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 130 KiB

View File

@ -1,439 +0,0 @@
# This file contains modules common to various models
import math
import numpy as np
import requests
import torch
import torch.nn as nn
from PIL import Image, ImageDraw
from utils.datasets import letterbox
from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh
from utils.plots import color_list
def autopad(k, p=None): # kernel, padding
# Pad to 'same'
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
def channel_shuffle(x, groups):
batchsize, num_channels, height, width = x.data.size()
channels_per_group = num_channels // groups
# reshape
x = x.view(batchsize, groups, channels_per_group, height, width)
x = torch.transpose(x, 1, 2).contiguous()
# flatten
x = x.view(batchsize, -1, height, width)
return x
def DWConv(c1, c2, k=1, s=1, act=True):
# Depthwise convolution
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
class Conv(nn.Module):
# Standard convolution
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super(Conv, self).__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
#self.act = self.act = nn.LeakyReLU(0.1, inplace=True) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
def forward(self, x):
return self.act(self.bn(self.conv(x)))
def fuseforward(self, x):
return self.act(self.conv(x))
class StemBlock(nn.Module):
def __init__(self, c1, c2, k=3, s=2, p=None, g=1, act=True):
super(StemBlock, self).__init__()
self.stem_1 = Conv(c1, c2, k, s, p, g, act)
self.stem_2a = Conv(c2, c2 // 2, 1, 1, 0)
self.stem_2b = Conv(c2 // 2, c2, 3, 2, 1)
self.stem_2p = nn.MaxPool2d(kernel_size=2,stride=2,ceil_mode=True)
self.stem_3 = Conv(c2 * 2, c2, 1, 1, 0)
def forward(self, x):
stem_1_out = self.stem_1(x)
stem_2a_out = self.stem_2a(stem_1_out)
stem_2b_out = self.stem_2b(stem_2a_out)
stem_2p_out = self.stem_2p(stem_1_out)
out = self.stem_3(torch.cat((stem_2b_out,stem_2p_out),1))
return out
class Bottleneck(nn.Module):
# Standard bottleneck
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
super(Bottleneck, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_, c2, 3, 1, g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class BottleneckCSP(nn.Module):
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super(BottleneckCSP, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
self.cv4 = Conv(2 * c_, c2, 1, 1)
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
self.act = nn.LeakyReLU(0.1, inplace=True)
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
def forward(self, x):
y1 = self.cv3(self.m(self.cv1(x)))
y2 = self.cv2(x)
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
class C3(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super(C3, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
def forward(self, x):
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
class ShuffleV2Block(nn.Module):
def __init__(self, inp, oup, stride):
super(ShuffleV2Block, self).__init__()
if not (1 <= stride <= 3):
raise ValueError('illegal stride value')
self.stride = stride
branch_features = oup // 2
assert (self.stride != 1) or (inp == branch_features << 1)
if self.stride > 1:
self.branch1 = nn.Sequential(
self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
nn.BatchNorm2d(inp),
nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(branch_features),
nn.SiLU(),
)
else:
self.branch1 = nn.Sequential()
self.branch2 = nn.Sequential(
nn.Conv2d(inp if (self.stride > 1) else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(branch_features),
nn.SiLU(),
self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
nn.BatchNorm2d(branch_features),
nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(branch_features),
nn.SiLU(),
)
@staticmethod
def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)
def forward(self, x):
if self.stride == 1:
x1, x2 = x.chunk(2, dim=1)
out = torch.cat((x1, self.branch2(x2)), dim=1)
else:
out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
out = channel_shuffle(out, 2)
return out
class BlazeBlock(nn.Module):
def __init__(self, in_channels,out_channels,mid_channels=None,stride=1):
super(BlazeBlock, self).__init__()
mid_channels = mid_channels or in_channels
assert stride in [1, 2]
if stride>1:
self.use_pool = True
else:
self.use_pool = False
self.branch1 = nn.Sequential(
nn.Conv2d(in_channels=in_channels,out_channels=mid_channels,kernel_size=5,stride=stride,padding=2,groups=in_channels),
nn.BatchNorm2d(mid_channels),
nn.Conv2d(in_channels=mid_channels,out_channels=out_channels,kernel_size=1,stride=1),
nn.BatchNorm2d(out_channels),
)
if self.use_pool:
self.shortcut = nn.Sequential(
nn.MaxPool2d(kernel_size=stride, stride=stride),
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
nn.BatchNorm2d(out_channels),
)
self.relu = nn.SiLU(inplace=True)
def forward(self, x):
branch1 = self.branch1(x)
out = (branch1+self.shortcut(x)) if self.use_pool else (branch1+x)
return self.relu(out)
class DoubleBlazeBlock(nn.Module):
def __init__(self,in_channels,out_channels,mid_channels=None,stride=1):
super(DoubleBlazeBlock, self).__init__()
mid_channels = mid_channels or in_channels
assert stride in [1, 2]
if stride > 1:
self.use_pool = True
else:
self.use_pool = False
self.branch1 = nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=5, stride=stride,padding=2,groups=in_channels),
nn.BatchNorm2d(in_channels),
nn.Conv2d(in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1),
nn.BatchNorm2d(mid_channels),
nn.SiLU(inplace=True),
nn.Conv2d(in_channels=mid_channels, out_channels=mid_channels, kernel_size=5, stride=1,padding=2),
nn.BatchNorm2d(mid_channels),
nn.Conv2d(in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1),
nn.BatchNorm2d(out_channels),
)
if self.use_pool:
self.shortcut = nn.Sequential(
nn.MaxPool2d(kernel_size=stride, stride=stride),
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
nn.BatchNorm2d(out_channels),
)
self.relu = nn.SiLU(inplace=True)
def forward(self, x):
branch1 = self.branch1(x)
out = (branch1 + self.shortcut(x)) if self.use_pool else (branch1 + x)
return self.relu(out)
class SPP(nn.Module):
# Spatial pyramid pooling layer used in YOLOv3-SPP
def __init__(self, c1, c2, k=(5, 9, 13)):
super(SPP, self).__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
def forward(self, x):
x = self.cv1(x)
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
class Focus(nn.Module):
# Focus wh information into c-space
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super(Focus, self).__init__()
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
# self.contract = Contract(gain=2)
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
# return self.conv(self.contract(x))
class Contract(nn.Module):
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
def __init__(self, gain=2):
super().__init__()
self.gain = gain
def forward(self, x):
N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
s = self.gain
x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
class Expand(nn.Module):
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
def __init__(self, gain=2):
super().__init__()
self.gain = gain
def forward(self, x):
N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
s = self.gain
x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
class Concat(nn.Module):
# Concatenate a list of tensors along dimension
def __init__(self, dimension=1):
super(Concat, self).__init__()
self.d = dimension
def forward(self, x):
return torch.cat(x, self.d)
class NMS(nn.Module):
# Non-Maximum Suppression (NMS) module
conf = 0.25 # confidence threshold
iou = 0.45 # IoU threshold
classes = None # (optional list) filter by class
def __init__(self):
super(NMS, self).__init__()
def forward(self, x):
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
class autoShape(nn.Module):
# input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
img_size = 640 # inference size (pixels)
conf = 0.25 # NMS confidence threshold
iou = 0.45 # NMS IoU threshold
classes = None # (optional list) filter by class
def __init__(self, model):
super(autoShape, self).__init__()
self.model = model.eval()
def autoshape(self):
print('autoShape already enabled, skipping... ') # model already converted to model.autoshape()
return self
def forward(self, imgs, size=640, augment=False, profile=False):
# Inference from various sources. For height=720, width=1280, RGB images example inputs are:
# filename: imgs = 'data/samples/zidane.jpg'
# URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
# PIL: = Image.open('image.jpg') # HWC x(720,1280,3)
# numpy: = np.zeros((720,1280,3)) # HWC
# torch: = torch.zeros(16,3,720,1280) # BCHW
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
p = next(self.model.parameters()) # for device and type
if isinstance(imgs, torch.Tensor): # torch
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
# Pre-process
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
shape0, shape1 = [], [] # image and inference shapes
for i, im in enumerate(imgs):
if isinstance(im, str): # filename or uri
im = Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im) # open
im = np.array(im) # to numpy
if im.shape[0] < 5: # image in CHW
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
s = im.shape[:2] # HWC
shape0.append(s) # image shape
g = (size / max(s)) # gain
shape1.append([y * g for y in s])
imgs[i] = im # update
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
x = np.stack(x, 0) if n > 1 else x[0][None] # stack
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
# Inference
with torch.no_grad():
y = self.model(x, augment, profile)[0] # forward
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
# Post-process
for i in range(n):
scale_coords(shape1, y[i][:, :4], shape0[i])
return Detections(imgs, y, self.names)
class Detections:
# detections class for YOLOv5 inference results
def __init__(self, imgs, pred, names=None):
super(Detections, self).__init__()
d = pred[0].device # device
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
self.imgs = imgs # list of images as numpy arrays
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
self.names = names # class names
self.xyxy = pred # xyxy pixels
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
self.n = len(self.pred)
def display(self, pprint=False, show=False, save=False, render=False):
colors = color_list()
for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
if pred is not None:
for c in pred[:, -1].unique():
n = (pred[:, -1] == c).sum() # detections per class
str += f'{n} {self.names[int(c)]}s, ' # add to string
if show or save or render:
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
for *box, conf, cls in pred: # xyxy, confidence, class
# str += '%s %.2f, ' % (names[int(cls)], conf) # label
ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) # plot
if pprint:
print(str)
if show:
img.show(f'Image {i}') # show
if save:
f = f'results{i}.jpg'
str += f"saved to '{f}'"
img.save(f) # save
if render:
self.imgs[i] = np.asarray(img)
def print(self):
self.display(pprint=True) # print results
def show(self):
self.display(show=True) # show results
def save(self):
self.display(save=True) # save results
def render(self):
self.display(render=True) # render results
return self.imgs
def __len__(self):
return self.n
def tolist(self):
# return a list of Detections objects, i.e. 'for result in results.tolist():'
x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)]
for d in x:
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
setattr(d, k, getattr(d, k)[0]) # pop out of list
return x
class Classify(nn.Module):
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
super(Classify, self).__init__()
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
self.flat = nn.Flatten()
def forward(self, x):
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
return self.flat(self.conv(z)) # flatten to x(b,c2)

View File

@ -1,133 +0,0 @@
# This file contains experimental modules
import numpy as np
import torch
import torch.nn as nn
from models.common import Conv, DWConv
from utils.google_utils import attempt_download
class CrossConv(nn.Module):
# Cross Convolution Downsample
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
super(CrossConv, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, (1, k), (1, s))
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class Sum(nn.Module):
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, n, weight=False): # n: number of inputs
super(Sum, self).__init__()
self.weight = weight # apply weights boolean
self.iter = range(n - 1) # iter object
if weight:
self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
def forward(self, x):
y = x[0] # no weight
if self.weight:
w = torch.sigmoid(self.w) * 2
for i in self.iter:
y = y + x[i + 1] * w[i]
else:
for i in self.iter:
y = y + x[i + 1]
return y
class GhostConv(nn.Module):
# Ghost Convolution https://github.com/huawei-noah/ghostnet
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
super(GhostConv, self).__init__()
c_ = c2 // 2 # hidden channels
self.cv1 = Conv(c1, c_, k, s, None, g, act)
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
def forward(self, x):
y = self.cv1(x)
return torch.cat([y, self.cv2(y)], 1)
class GhostBottleneck(nn.Module):
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
def __init__(self, c1, c2, k, s):
super(GhostBottleneck, self).__init__()
c_ = c2 // 2
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
def forward(self, x):
return self.conv(x) + self.shortcut(x)
class MixConv2d(nn.Module):
# Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
super(MixConv2d, self).__init__()
groups = len(k)
if equal_ch: # equal c_ per group
i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
else: # equal weight.numel() per group
b = [c2] + [0] * groups
a = np.eye(groups + 1, groups, k=-1)
a -= np.roll(a, 1, axis=1)
a *= np.array(k) ** 2
a[0] = 1
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
self.bn = nn.BatchNorm2d(c2)
self.act = nn.LeakyReLU(0.1, inplace=True)
def forward(self, x):
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
class Ensemble(nn.ModuleList):
# Ensemble of models
def __init__(self):
super(Ensemble, self).__init__()
def forward(self, x, augment=False):
y = []
for module in self:
y.append(module(x, augment)[0])
# y = torch.stack(y).max(0)[0] # max ensemble
# y = torch.stack(y).mean(0) # mean ensemble
y = torch.cat(y, 1) # nms ensemble
return y, None # inference, train output
def attempt_load(weights, map_location=None):
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
model = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
attempt_download(w)
model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model
# Compatibility updates
for m in model.modules():
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
m.inplace = True # pytorch 1.7.0 compatibility
elif type(m) is Conv:
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if len(model) == 1:
return model[-1] # return model
else:
print('Ensemble created with %s\n' % weights)
for k in ['names', 'stride']:
setattr(model, k, getattr(model[-1], k))
return model # return ensemble

View File

@ -1,112 +0,0 @@
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
Usage:
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
"""
import argparse
import sys
import time
sys.path.append('./') # to run '$ python *.py' files in subdirectories
import torch
import torch.nn as nn
import models
from models.experimental import attempt_load
from utils.activations import Hardswish, SiLU
from utils.general import set_logging, check_img_size
import onnx
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
parser.add_argument('--img_size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
parser.add_argument('--batch_size', type=int, default=1, help='batch size')
parser.add_argument('--onnx2pb', action='store_true', default=False, help='export onnx to pb')
opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
print(opt)
set_logging()
t = time.time()
# Load PyTorch model
model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model
model.eval()
labels = model.names
# Checks
gs = int(max(model.stride)) # grid size (max stride)
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
# Input
img = torch.zeros(opt.batch_size, 3, *opt.img_size) # image size(1,3,320,192) iDetection
# Update model
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, models.common.Conv): # assign export-friendly activations
if isinstance(m.act, nn.Hardswish):
m.act = Hardswish()
elif isinstance(m.act, nn.SiLU):
m.act = SiLU()
# elif isinstance(m, models.yolo.Detect):
# m.forward = m.forward_export # assign forward (optional)
if isinstance(m, models.common.ShuffleV2Block):#shufflenet block nn.SiLU
for i in range(len(m.branch1)):
if isinstance(m.branch1[i], nn.SiLU):
m.branch1[i] = SiLU()
for i in range(len(m.branch2)):
if isinstance(m.branch2[i], nn.SiLU):
m.branch2[i] = SiLU()
model.model[-1].export = True # set Detect() layer export=True
y = model(img) # dry run
# ONNX export
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
f = opt.weights.replace('.pt', '.onnx') # filename
model.fuse() # only for ONNX
input_names=['data']
output_names=['stride_' + str(int(x)) for x in model.stride]
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=input_names,
output_names=output_names)
# Checks
onnx_model = onnx.load(f) # load onnx model
onnx.checker.check_model(onnx_model) # check onnx model
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
print('ONNX export success, saved as %s' % f)
# Finish
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
# PB export
if opt.onnx2pb:
print('download the newest onnx_tf by https://github.com/onnx/onnx-tensorflow/tree/master/onnx_tf')
from onnx_tf.backend import prepare
import tensorflow as tf
outpb = f.replace('.onnx', '.pb') # filename
# strict=True maybe leads to KeyError: 'pyfunc_0', check: https://github.com/onnx/onnx-tensorflow/issues/167
tf_rep = prepare(onnx_model, strict=False) # prepare tf representation
tf_rep.export_graph(outpb) # export the model
out_onnx = tf_rep.run(img) # onnx output
# check pb
with tf.Graph().as_default():
graph_def = tf.GraphDef()
with open(outpb, "rb") as f:
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name="")
with tf.Session() as sess:
init = tf.global_variables_initializer()
input_x = sess.graph.get_tensor_by_name(input_names[0]+':0') # input
outputs = []
for i in output_names:
outputs.append(sess.graph.get_tensor_by_name(i+':0'))
out_pb = sess.run(outputs, feed_dict={input_x: img})
print(f'out_pytorch {y}')
print(f'out_onnx {out_onnx}')
print(f'out_pb {out_pb}')

View File

@ -1,343 +0,0 @@
import argparse
import logging
import math
import sys
from copy import deepcopy
from pathlib import Path
import torch
import torch.nn as nn
sys.path.append('./') # to run '$ python *.py' files in subdirectories
logger = logging.getLogger(__name__)
from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, C3, ShuffleV2Block, Concat, NMS, autoShape, StemBlock, BlazeBlock, DoubleBlazeBlock
from models.experimental import MixConv2d, CrossConv
from utils.autoanchor import check_anchor_order
from utils.general import make_divisible, check_file, set_logging
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
select_device, copy_attr
try:
import thop # for FLOPS computation
except ImportError:
thop = None
class Detect(nn.Module):
stride = None # strides computed during build
export = False # onnx export
export_cat = False # onnx export cat output
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
super(Detect, self).__init__()
self.nc = nc # number of classes
#self.no = nc + 5 # number of outputs per anchor
self.no = nc + 5 + 10 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
self.register_buffer('anchors', a) # shape(nl,na,2)
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
def forward(self, x):
# x = x.copy() # for profiling
z = [] # inference output
# self.training |= self.export
if self.export:
for i in range(self.nl):
x[i] = self.m[i](x[i])
bs, _, ny, nx = x[i].shape # x(bs,48,20,20) to x(bs,3,20,20,16)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
return x
if self.export_cat:
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
y = torch.full_like(x[i], 0)
y = y + torch.cat((x[i][:, :, :, :, 0:5].sigmoid(), torch.cat((x[i][:, :, :, :, 5:15], x[i][:, :, :, :, 15:15+self.nc].sigmoid()), 4)), 4)
box_xy = (y[:, :, :, :, 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
box_wh = (y[:, :, :, :, 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
# box_conf = torch.cat((box_xy, torch.cat((box_wh, y[:, :, :, :, 4:5]), 4)), 4)
landm1 = y[:, :, :, :, 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x1 y1
landm2 = y[:, :, :, :, 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x2 y2
landm3 = y[:, :, :, :, 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x3 y3
landm4 = y[:, :, :, :, 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x4 y4
landm5 = y[:, :, :, :, 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x5 y5
# landm = torch.cat((landm1, torch.cat((landm2, torch.cat((landm3, torch.cat((landm4, landm5), 4)), 4)), 4)), 4)
# y = torch.cat((box_conf, torch.cat((landm, y[:, :, :, :, 15:15+self.nc]), 4)), 4)
y = torch.cat([box_xy, box_wh, y[:, :, :, :, 4:5], landm1, landm2, landm3, landm4, landm5, y[:, :, :, :, 15:15+self.nc]], -1)
z.append(y.view(bs, -1, self.no))
return torch.cat(z, 1)
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
y = torch.full_like(x[i], 0)
class_range = list(range(5)) + list(range(15,15+self.nc))
y[..., class_range] = x[i][..., class_range].sigmoid()
y[..., 5:15] = x[i][..., 5:15]
#y = x[i].sigmoid()
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
#y[..., 5:15] = y[..., 5:15] * 8 - 4
y[..., 5:7] = y[..., 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x1 y1
y[..., 7:9] = y[..., 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x2 y2
y[..., 9:11] = y[..., 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x3 y3
y[..., 11:13] = y[..., 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x4 y4
y[..., 13:15] = y[..., 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x5 y5
#y[..., 5:7] = (y[..., 5:7] * 2 -1) * self.anchor_grid[i] # landmark x1 y1
#y[..., 7:9] = (y[..., 7:9] * 2 -1) * self.anchor_grid[i] # landmark x2 y2
#y[..., 9:11] = (y[..., 9:11] * 2 -1) * self.anchor_grid[i] # landmark x3 y3
#y[..., 11:13] = (y[..., 11:13] * 2 -1) * self.anchor_grid[i] # landmark x4 y4
#y[..., 13:15] = (y[..., 13:15] * 2 -1) * self.anchor_grid[i] # landmark x5 y5
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)
@staticmethod
def _make_grid(nx=20, ny=20):
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
class Model(nn.Module):
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes
super(Model, self).__init__()
if isinstance(cfg, dict):
self.yaml = cfg # model dict
else: # is *.yaml
import yaml # for torch hub
self.yaml_file = Path(cfg).name
with open(cfg) as f:
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
# Define model
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
if nc and nc != self.yaml['nc']:
logger.info('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc))
self.yaml['nc'] = nc # override yaml value
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
# Build strides, anchors
m = self.model[-1] # Detect()
if isinstance(m, Detect):
s = 128 # 2x min stride
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
m.anchors /= m.stride.view(-1, 1, 1)
check_anchor_order(m)
self.stride = m.stride
self._initialize_biases() # only run once
# print('Strides: %s' % m.stride.tolist())
# Init weights, biases
initialize_weights(self)
self.info()
logger.info('')
def forward(self, x, augment=False, profile=False):
if augment:
img_size = x.shape[-2:] # height, width
s = [1, 0.83, 0.67] # scales
f = [None, 3, None] # flips (2-ud, 3-lr)
y = [] # outputs
for si, fi in zip(s, f):
xi = scale_img(x.flip(fi) if fi else x, si)
yi = self.forward_once(xi)[0] # forward
# cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
yi[..., :4] /= si # de-scale
if fi == 2:
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
elif fi == 3:
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
y.append(yi)
return torch.cat(y, 1), None # augmented inference, train
else:
return self.forward_once(x, profile) # single-scale inference, train
def forward_once(self, x, profile=False):
y, dt = [], [] # outputs
for m in self.model:
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
t = time_synchronized()
for _ in range(10):
_ = m(x)
dt.append((time_synchronized() - t) * 100)
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if profile:
print('%.1fms total' % sum(dt))
return x
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
# https://arxiv.org/abs/1708.02002 section 3.3
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
m = self.model[-1] # Detect() module
for mi, s in zip(m.m, m.stride): # from
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
def _print_biases(self):
m = self.model[-1] # Detect() module
for mi in m.m: # from
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
# def _print_weights(self):
# for m in self.model.modules():
# if type(m) is Bottleneck:
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
print('Fusing layers... ')
for m in self.model.modules():
if type(m) is Conv and hasattr(m, 'bn'):
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
delattr(m, 'bn') # remove batchnorm
m.forward = m.fuseforward # update forward
self.info()
return self
def nms(self, mode=True): # add or remove NMS module
present = type(self.model[-1]) is NMS # last layer is NMS
if mode and not present:
print('Adding NMS... ')
m = NMS() # module
m.f = -1 # from
m.i = self.model[-1].i + 1 # index
self.model.add_module(name='%s' % m.i, module=m) # add
self.eval()
elif not mode and present:
print('Removing NMS... ')
self.model = self.model[:-1] # remove
return self
def autoshape(self): # add autoShape module
print('Adding autoShape... ')
m = autoShape(self) # wrap model
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
return m
def info(self, verbose=False, img_size=640): # print model information
model_info(self, verbose, img_size)
def parse_model(d, ch): # model_dict, input_channels(3)
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
m = eval(m) if isinstance(m, str) else m # eval strings
for j, a in enumerate(args):
try:
args[j] = eval(a) if isinstance(a, str) else a # eval strings
except:
pass
n = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in [Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, ShuffleV2Block, StemBlock, BlazeBlock, DoubleBlazeBlock]:
c1, c2 = ch[f], args[0]
# Normal
# if i > 0 and args[0] != no: # channel expansion factor
# ex = 1.75 # exponential (default 2.0)
# e = math.log(c2 / ch[1]) / math.log(2)
# c2 = int(ch[1] * ex ** e)
# if m != Focus:
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
# Experimental
# if i > 0 and args[0] != no: # channel expansion factor
# ex = 1 + gw # exponential (default 2.0)
# ch1 = 32 # ch[1]
# e = math.log(c2 / ch1) / math.log(2) # level 1-n
# c2 = int(ch1 * ex ** e)
# if m != Focus:
# c2 = make_divisible(c2, 8) if c2 != no else c2
args = [c1, c2, *args[1:]]
if m in [BottleneckCSP, C3]:
args.insert(2, n)
n = 1
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])
elif m is Detect:
args.append([ch[x + 1] for x in f])
if isinstance(args[1], int): # number of anchors
args[1] = [list(range(args[1] * 2))] * len(f)
else:
c2 = ch[f]
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace('__main__.', '') # module type
np = sum([x.numel() for x in m_.parameters()]) # number params
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
ch.append(c2)
return nn.Sequential(*layers), sorted(save)
from thop import profile
from thop import clever_format
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
opt = parser.parse_args()
opt.cfg = check_file(opt.cfg) # check file
set_logging()
device = select_device(opt.device)
# Create model
model = Model(opt.cfg).to(device)
stride = model.stride.max()
if stride == 32:
input = torch.Tensor(1, 3, 480, 640).to(device)
else:
input = torch.Tensor(1, 3, 512, 640).to(device)
model.train()
print(model)
flops, params = profile(model, inputs=(input, ))
flops, params = clever_format([flops, params], "%.3f")
print('Flops:', flops, ',Params:' ,params)

View File

@ -1,36 +0,0 @@
# pip install -r requirements.txt
# Base ----------------------------------------
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.2
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.41.0
# Logging -------------------------------------
tensorboard>=2.4.1
# wandb
# Plotting ------------------------------------
pandas>=1.1.4
seaborn>=0.11.0
# Export --------------------------------------
# coremltools>=4.1 # CoreML export
# onnx>=1.9.0 # ONNX export
# onnx-simplifier>=0.3.6 # ONNX simplifier
# scikit-learn==0.19.2 # CoreML quantization
# tensorflow>=2.4.1 # TFLite export
# tensorflowjs>=3.9.0 # TF.js export
# Extras --------------------------------------
# albumentations>=1.0.3
# Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
# pycocotools>=2.0 # COCO mAP
# roboflow
thop # FLOPs computation

View File

@ -1,28 +0,0 @@
lr0: 0.01
lrf: 0.2
momentum: 0.937
weight_decay: 0.0005
warmup_epochs: 3.0
warmup_momentum: 0.8
warmup_bias_lr: 0.1
box: 0.05
cls: 0.5
landmark: 0.005
cls_pw: 1.0
obj: 1.0
obj_pw: 1.0
iou_t: 0.2
anchor_t: 4.0
fl_gamma: 0.0
hsv_h: 0.015
hsv_s: 0.7
hsv_v: 0.4
degrees: 0.0
translate: 0.1
scale: 0.5
shear: 0.5
perspective: 0.0
flipud: 0.0
fliplr: 0.5
mosaic: 0.5
mixup: 0.0

View File

@ -1,34 +0,0 @@
weights: pretrained models
cfg: models/yolov5s.yaml
data: data/widerface.yaml
hyp: data/hyp.scratch.yaml
epochs: 250
batch_size: 16
img_size:
- 800
- 800
rect: false
resume: false
nosave: false
notest: false
noautoanchor: false
evolve: false
bucket: ''
cache_images: false
image_weights: false
device: ''
multi_scale: false
single_cls: false
adam: false
sync_bn: false
local_rank: -1
log_imgs: 16
log_artifacts: false
workers: 4
project: runs/train
name: exp
exist_ok: false
total_batch_size: 16
world_size: 1
global_rank: -1
save_dir: runs/train/exp

View File

@ -1,72 +0,0 @@
# Activation functions
import torch
import torch.nn as nn
import torch.nn.functional as F
# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
class SiLU(nn.Module): # export-friendly version of nn.SiLU()
@staticmethod
def forward(x):
return x * torch.sigmoid(x)
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
@staticmethod
def forward(x):
# return x * F.hardsigmoid(x) # for torchscript and CoreML
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
class MemoryEfficientSwish(nn.Module):
class F(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x * torch.sigmoid(x)
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
return grad_output * (sx * (1 + x * (1 - sx)))
def forward(self, x):
return self.F.apply(x)
# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
class Mish(nn.Module):
@staticmethod
def forward(x):
return x * F.softplus(x).tanh()
class MemoryEfficientMish(nn.Module):
class F(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
fx = F.softplus(x).tanh()
return grad_output * (fx + x * sx * (1 - fx * fx))
def forward(self, x):
return self.F.apply(x)
# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
class FReLU(nn.Module):
def __init__(self, c1, k=3): # ch_in, kernel
super().__init__()
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
self.bn = nn.BatchNorm2d(c1)
def forward(self, x):
return torch.max(x, self.bn(self.conv(x)))

View File

@ -1,155 +0,0 @@
# Auto-anchor utils
import numpy as np
import torch
import yaml
from scipy.cluster.vq import kmeans
from tqdm import tqdm
from utils.general import colorstr
def check_anchor_order(m):
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
a = m.anchor_grid.prod(-1).view(-1) # anchor area
da = a[-1] - a[0] # delta a
ds = m.stride[-1] - m.stride[0] # delta s
if da.sign() != ds.sign(): # same order
print('Reversing anchor order')
m.anchors[:] = m.anchors.flip(0)
m.anchor_grid[:] = m.anchor_grid.flip(0)
def check_anchors(dataset, model, thr=4.0, imgsz=640):
# Check anchor fit to data, recompute if necessary
prefix = colorstr('autoanchor: ')
print(f'\n{prefix}Analyzing anchors... ', end='')
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
def metric(k): # compute metric
r = wh[:, None] / k[None]
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
best = x.max(1)[0] # best_x
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
bpr = (best > 1. / thr).float().mean() # best possible recall
return bpr, aat
bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
if bpr < 0.98: # threshold to recompute
print('. Attempting to improve anchors, please wait...')
na = m.anchor_grid.numel() // 2 # number of anchors
new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
new_bpr = metric(new_anchors.reshape(-1, 2))[0]
if new_bpr > bpr: # replace anchors
new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)
m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference
m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
check_anchor_order(m)
print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
else:
print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
print('') # newline
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
""" Creates kmeans-evolved anchors from training dataset
Arguments:
path: path to dataset *.yaml, or a loaded dataset
n: number of anchors
img_size: image size used for training
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
gen: generations to evolve anchors using genetic algorithm
verbose: print all results
Return:
k: kmeans evolved anchors
Usage:
from utils.autoanchor import *; _ = kmean_anchors()
"""
thr = 1. / thr
prefix = colorstr('autoanchor: ')
def metric(k, wh): # compute metrics
r = wh[:, None] / k[None]
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
# x = wh_iou(wh, torch.tensor(k)) # iou metric
return x, x.max(1)[0] # x, best_x
def anchor_fitness(k): # mutation fitness
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
return (best * (best > thr).float()).mean() # fitness
def print_results(k):
k = k[np.argsort(k.prod(1))] # sort small to large
x, best = metric(k, wh0)
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
for i, x in enumerate(k):
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
return k
if isinstance(path, str): # *.yaml file
with open(path) as f:
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
from utils.datasets import LoadImagesAndLabels
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
else:
dataset = path # dataset
# Get label wh
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
# Filter
i = (wh0 < 3.0).any(1).sum()
if i:
print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
# wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
# Kmeans calculation
print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
s = wh.std(0) # sigmas for whitening
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
k *= s
wh = torch.tensor(wh, dtype=torch.float32) # filtered
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
k = print_results(k)
# Plot
# k, d = [None] * 20, [None] * 20
# for i in tqdm(range(1, 21)):
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
# ax = ax.ravel()
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
# fig.savefig('wh.png', dpi=200)
# Evolve
npr = np.random
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
for _ in pbar:
v = np.ones(sh)
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
kg = (k.copy() * v).clip(min=2.0)
fg = anchor_fitness(kg)
if fg > f:
f, k = fg, kg.copy()
pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
if verbose:
print_results(k)
return print_results(k)

File diff suppressed because it is too large Load Diff

View File

@ -1,834 +0,0 @@
import glob
import logging
import math
import os
import random
import shutil
import time
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path
from threading import Thread
import cv2
import numpy as np
import torch
from PIL import Image, ExifTags
from torch.utils.data import Dataset
from tqdm import tqdm
from utils.general import xyxy2xywh, xywh2xyxy, clean_str
from utils.torch_utils import torch_distributed_zero_first
# Parameters
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
logger = logging.getLogger(__name__)
# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
if ExifTags.TAGS[orientation] == 'Orientation':
break
def get_hash(files):
# Returns a single hash value of a list of files
return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
def img2label_paths(img_paths):
# Define label paths as a function of image paths
sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
return [x.replace(sa, sb, 1).replace('.' + x.split('.')[-1], '.txt') for x in img_paths]
def exif_size(img):
# Returns exif-corrected PIL size
s = img.size # (width, height)
try:
rotation = dict(img._getexif().items())[orientation]
if rotation == 6: # rotation 270
s = (s[1], s[0])
elif rotation == 8: # rotation 90
s = (s[1], s[0])
except:
pass
return s
def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
# Make sure only the first process in DDP process the dataset first, and the following others can use the cache
with torch_distributed_zero_first(rank):
dataset = LoadFaceImagesAndLabels(path, imgsz, batch_size,
augment=augment, # augment images
hyp=hyp, # augmentation hyperparameters
rect=rect, # rectangular training
cache_images=cache,
single_cls=opt.single_cls,
stride=int(stride),
pad=pad,
image_weights=image_weights,
)
batch_size = min(batch_size, len(dataset))
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
# Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
dataloader = loader(dataset,
batch_size=batch_size,
num_workers=nw,
sampler=sampler,
pin_memory=True,
collate_fn=LoadFaceImagesAndLabels.collate_fn4 if quad else LoadFaceImagesAndLabels.collate_fn)
return dataloader, dataset
class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
""" Dataloader that reuses workers
Uses same syntax as vanilla DataLoader
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
self.iterator = super().__iter__()
def __len__(self):
return len(self.batch_sampler.sampler)
def __iter__(self):
for i in range(len(self)):
yield next(self.iterator)
class _RepeatSampler(object):
""" Sampler that repeats forever
Args:
sampler (Sampler)
"""
def __init__(self, sampler):
self.sampler = sampler
def __iter__(self):
while True:
yield from iter(self.sampler)
class LoadFaceImagesAndLabels(Dataset): # for training/testing
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
cache_images=False, single_cls=False, stride=32, pad=0.0, rank=-1):
self.img_size = img_size
self.augment = augment
self.hyp = hyp
self.image_weights = image_weights
self.rect = False if image_weights else rect
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
self.mosaic_border = [-img_size // 2, -img_size // 2]
self.stride = stride
try:
f = [] # image files
for p in path if isinstance(path, list) else [path]:
p = Path(p) # os-agnostic
if p.is_dir(): # dir
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
elif p.is_file(): # file
with open(p, 'r') as t:
t = t.read().strip().splitlines()
parent = str(p.parent) + os.sep
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
else:
raise Exception('%s does not exist' % p)
self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
assert self.img_files, 'No images found'
except Exception as e:
raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
# Check cache
self.label_files = img2label_paths(self.img_files) # labels
cache_path = Path(self.label_files[0]).parent.with_suffix('.cache') # cached labels
if cache_path.is_file():
cache = torch.load(cache_path) # load
if cache['hash'] != get_hash(self.label_files + self.img_files) or 'results' not in cache: # changed
cache = self.cache_labels(cache_path) # re-cache
else:
cache = self.cache_labels(cache_path) # cache
# Display cache
[nf, nm, ne, nc, n] = cache.pop('results') # found, missing, empty, corrupted, total
desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
tqdm(None, desc=desc, total=n, initial=n)
assert nf > 0 or not augment, f'No labels found in {cache_path}. Can not train without labels. See {help_url}'
# Read cache
cache.pop('hash') # remove hash
labels, shapes = zip(*cache.values())
self.labels = list(labels)
self.shapes = np.array(shapes, dtype=np.float64)
self.img_files = list(cache.keys()) # update
self.label_files = img2label_paths(cache.keys()) # update
if single_cls:
for x in self.labels:
x[:, 0] = 0
n = len(shapes) # number of images
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
nb = bi[-1] + 1 # number of batches
self.batch = bi # batch index of image
self.n = n
self.indices = range(n)
# Rectangular Training
if self.rect:
# Sort by aspect ratio
s = self.shapes # wh
ar = s[:, 1] / s[:, 0] # aspect ratio
irect = ar.argsort()
self.img_files = [self.img_files[i] for i in irect]
self.label_files = [self.label_files[i] for i in irect]
self.labels = [self.labels[i] for i in irect]
self.shapes = s[irect] # wh
ar = ar[irect]
# Set training image shapes
shapes = [[1, 1]] * nb
for i in range(nb):
ari = ar[bi == i]
mini, maxi = ari.min(), ari.max()
if maxi < 1:
shapes[i] = [maxi, 1]
elif mini > 1:
shapes[i] = [1, 1 / mini]
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
self.imgs = [None] * n
if cache_images:
gb = 0 # Gigabytes of cached images
self.img_hw0, self.img_hw = [None] * n, [None] * n
results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads
pbar = tqdm(enumerate(results), total=n)
for i, x in pbar:
self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
gb += self.imgs[i].nbytes
pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
def cache_labels(self, path=Path('./labels.cache')):
# Cache dataset labels, check images and read shapes
x = {} # dict
nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
for i, (im_file, lb_file) in enumerate(pbar):
try:
# verify images
im = Image.open(im_file)
im.verify() # PIL verify
shape = exif_size(im) # image size
assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
# verify labels
if os.path.isfile(lb_file):
nf += 1 # label found
with open(lb_file, 'r') as f:
l = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
if len(l):
assert l.shape[1] == 15, 'labels require 15 columns each'
assert (l >= -1).all(), 'negative labels'
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
else:
ne += 1 # label empty
l = np.zeros((0, 15), dtype=np.float32)
else:
nm += 1 # label missing
l = np.zeros((0, 15), dtype=np.float32)
x[im_file] = [l, shape]
except Exception as e:
nc += 1
print('WARNING: Ignoring corrupted image and/or label %s: %s' % (im_file, e))
pbar.desc = f"Scanning '{path.parent / path.stem}' for images and labels... " \
f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
if nf == 0:
print(f'WARNING: No labels found in {path}. See {help_url}')
x['hash'] = get_hash(self.label_files + self.img_files)
x['results'] = [nf, nm, ne, nc, i + 1]
torch.save(x, path) # save for next time
logging.info(f"New cache created: {path}")
return x
def __len__(self):
return len(self.img_files)
# def __iter__(self):
# self.count = -1
# print('ran dataset iter')
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
# return self
def __getitem__(self, index):
index = self.indices[index] # linear, shuffled, or image_weights
hyp = self.hyp
mosaic = self.mosaic and random.random() < hyp['mosaic']
if mosaic:
# Load mosaic
img, labels = load_mosaic_face(self, index)
shapes = None
# MixUp https://arxiv.org/pdf/1710.09412.pdf
if random.random() < hyp['mixup']:
img2, labels2 = load_mosaic_face(self, random.randint(0, self.n - 1))
r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
img = (img * r + img2 * (1 - r)).astype(np.uint8)
labels = np.concatenate((labels, labels2), 0)
else:
# Load image
img, (h0, w0), (h, w) = load_image(self, index)
# Letterbox
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
# Load labels
labels = []
x = self.labels[index]
if x.size > 0:
# Normalized xywh to pixel xyxy format
labels = x.copy()
labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
#labels[:, 5] = ratio[0] * w * x[:, 5] + pad[0] # pad width
labels[:, 5] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 5] + pad[0]) + (
np.array(x[:, 5] > 0, dtype=np.int32) - 1)
labels[:, 6] = np.array(x[:, 6] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 6] + pad[1]) + (
np.array(x[:, 6] > 0, dtype=np.int32) - 1)
labels[:, 7] = np.array(x[:, 7] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 7] + pad[0]) + (
np.array(x[:, 7] > 0, dtype=np.int32) - 1)
labels[:, 8] = np.array(x[:, 8] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 8] + pad[1]) + (
np.array(x[:, 8] > 0, dtype=np.int32) - 1)
labels[:, 9] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 9] + pad[0]) + (
np.array(x[:, 9] > 0, dtype=np.int32) - 1)
labels[:, 10] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 10] + pad[1]) + (
np.array(x[:, 10] > 0, dtype=np.int32) - 1)
labels[:, 11] = np.array(x[:, 11] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 11] + pad[0]) + (
np.array(x[:, 11] > 0, dtype=np.int32) - 1)
labels[:, 12] = np.array(x[:, 12] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 12] + pad[1]) + (
np.array(x[:, 12] > 0, dtype=np.int32) - 1)
labels[:, 13] = np.array(x[:, 13] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 13] + pad[0]) + (
np.array(x[:, 13] > 0, dtype=np.int32) - 1)
labels[:, 14] = np.array(x[:, 14] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 14] + pad[1]) + (
np.array(x[:, 14] > 0, dtype=np.int32) - 1)
if self.augment:
# Augment imagespace
if not mosaic:
img, labels = random_perspective(img, labels,
degrees=hyp['degrees'],
translate=hyp['translate'],
scale=hyp['scale'],
shear=hyp['shear'],
perspective=hyp['perspective'])
# Augment colorspace
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
# Apply cutouts
# if random.random() < 0.9:
# labels = cutout(img, labels)
nL = len(labels) # number of labels
if nL:
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
labels[:, [5, 7, 9, 11, 13]] /= img.shape[1] # normalized landmark x 0-1
labels[:, [5, 7, 9, 11, 13]] = np.where(labels[:, [5, 7, 9, 11, 13]] < 0, -1, labels[:, [5, 7, 9, 11, 13]])
labels[:, [6, 8, 10, 12, 14]] /= img.shape[0] # normalized landmark y 0-1
labels[:, [6, 8, 10, 12, 14]] = np.where(labels[:, [6, 8, 10, 12, 14]] < 0, -1, labels[:, [6, 8, 10, 12, 14]])
if self.augment:
# flip up-down
if random.random() < hyp['flipud']:
img = np.flipud(img)
if nL:
labels[:, 2] = 1 - labels[:, 2]
labels[:, 6] = np.where(labels[:,6] < 0, -1, 1 - labels[:, 6])
labels[:, 8] = np.where(labels[:, 8] < 0, -1, 1 - labels[:, 8])
labels[:, 10] = np.where(labels[:, 10] < 0, -1, 1 - labels[:, 10])
labels[:, 12] = np.where(labels[:, 12] < 0, -1, 1 - labels[:, 12])
labels[:, 14] = np.where(labels[:, 14] < 0, -1, 1 - labels[:, 14])
# flip left-right
if random.random() < hyp['fliplr']:
img = np.fliplr(img)
if nL:
labels[:, 1] = 1 - labels[:, 1]
labels[:, 5] = np.where(labels[:, 5] < 0, -1, 1 - labels[:, 5])
labels[:, 7] = np.where(labels[:, 7] < 0, -1, 1 - labels[:, 7])
labels[:, 9] = np.where(labels[:, 9] < 0, -1, 1 - labels[:, 9])
labels[:, 11] = np.where(labels[:, 11] < 0, -1, 1 - labels[:, 11])
labels[:, 13] = np.where(labels[:, 13] < 0, -1, 1 - labels[:, 13])
#左右镜像的时候,左眼、右眼, 左嘴角、右嘴角无法区分, 应该交换位置,便于网络学习
eye_left = np.copy(labels[:, [5, 6]])
mouth_left = np.copy(labels[:, [11, 12]])
labels[:, [5, 6]] = labels[:, [7, 8]]
labels[:, [7, 8]] = eye_left
labels[:, [11, 12]] = labels[:, [13, 14]]
labels[:, [13, 14]] = mouth_left
labels_out = torch.zeros((nL, 16))
if nL:
labels_out[:, 1:] = torch.from_numpy(labels)
#showlabels(img, labels[:, 1:5], labels[:, 5:15])
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
#print(index, ' --- labels_out: ', labels_out)
#if nL:
#print( ' : landmarks : ', torch.max(labels_out[:, 5:15]), ' --- ', torch.min(labels_out[:, 5:15]))
return torch.from_numpy(img), labels_out, self.img_files[index], shapes
@staticmethod
def collate_fn(batch):
img, label, path, shapes = zip(*batch) # transposed
for i, l in enumerate(label):
l[:, 0] = i # add target image index for build_targets()
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
def showlabels(img, boxs, landmarks):
for box in boxs:
x,y,w,h = box[0] * img.shape[1], box[1] * img.shape[0], box[2] * img.shape[1], box[3] * img.shape[0]
#cv2.rectangle(image, (x,y), (x+w,y+h), (0,255,0), 2)
cv2.rectangle(img, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2)
for landmark in landmarks:
#cv2.circle(img,(60,60),30,(0,0,255))
for i in range(5):
cv2.circle(img, (int(landmark[2*i] * img.shape[1]), int(landmark[2*i+1]*img.shape[0])), 3 ,(0,0,255), -1)
cv2.imshow('test', img)
cv2.waitKey(0)
def load_mosaic_face(self, index):
# loads images in a mosaic
labels4 = []
s = self.img_size
yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] # 3 additional image indices
for i, index in enumerate(indices):
# Load image
img, _, (h, w) = load_image(self, index)
# place img in img4
if i == 0: # top left
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
elif i == 1: # top right
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
elif i == 2: # bottom left
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
elif i == 3: # bottom right
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
padw = x1a - x1b
padh = y1a - y1b
# Labels
x = self.labels[index]
labels = x.copy()
if x.size > 0: # Normalized xywh to pixel xyxy format
#box, x1,y1,x2,y2
labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
#10 landmarks
labels[:, 5] = np.array(x[:, 5] > 0, dtype=np.int32) * (w * x[:, 5] + padw) + (np.array(x[:, 5] > 0, dtype=np.int32) - 1)
labels[:, 6] = np.array(x[:, 6] > 0, dtype=np.int32) * (h * x[:, 6] + padh) + (np.array(x[:, 6] > 0, dtype=np.int32) - 1)
labels[:, 7] = np.array(x[:, 7] > 0, dtype=np.int32) * (w * x[:, 7] + padw) + (np.array(x[:, 7] > 0, dtype=np.int32) - 1)
labels[:, 8] = np.array(x[:, 8] > 0, dtype=np.int32) * (h * x[:, 8] + padh) + (np.array(x[:, 8] > 0, dtype=np.int32) - 1)
labels[:, 9] = np.array(x[:, 9] > 0, dtype=np.int32) * (w * x[:, 9] + padw) + (np.array(x[:, 9] > 0, dtype=np.int32) - 1)
labels[:, 10] = np.array(x[:, 10] > 0, dtype=np.int32) * (h * x[:, 10] + padh) + (np.array(x[:, 10] > 0, dtype=np.int32) - 1)
labels[:, 11] = np.array(x[:, 11] > 0, dtype=np.int32) * (w * x[:, 11] + padw) + (np.array(x[:, 11] > 0, dtype=np.int32) - 1)
labels[:, 12] = np.array(x[:, 12] > 0, dtype=np.int32) * (h * x[:, 12] + padh) + (np.array(x[:, 12] > 0, dtype=np.int32) - 1)
labels[:, 13] = np.array(x[:, 13] > 0, dtype=np.int32) * (w * x[:, 13] + padw) + (np.array(x[:, 13] > 0, dtype=np.int32) - 1)
labels[:, 14] = np.array(x[:, 14] > 0, dtype=np.int32) * (h * x[:, 14] + padh) + (np.array(x[:, 14] > 0, dtype=np.int32) - 1)
labels4.append(labels)
# Concat/clip labels
if len(labels4):
labels4 = np.concatenate(labels4, 0)
np.clip(labels4[:, 1:5], 0, 2 * s, out=labels4[:, 1:5]) # use with random_perspective
# img4, labels4 = replicate(img4, labels4) # replicate
#landmarks
labels4[:, 5:] = np.where(labels4[:, 5:] < 0, -1, labels4[:, 5:])
labels4[:, 5:] = np.where(labels4[:, 5:] > 2 * s, -1, labels4[:, 5:])
labels4[:, 5] = np.where(labels4[:, 6] == -1, -1, labels4[:, 5])
labels4[:, 6] = np.where(labels4[:, 5] == -1, -1, labels4[:, 6])
labels4[:, 7] = np.where(labels4[:, 8] == -1, -1, labels4[:, 7])
labels4[:, 8] = np.where(labels4[:, 7] == -1, -1, labels4[:, 8])
labels4[:, 9] = np.where(labels4[:, 10] == -1, -1, labels4[:, 9])
labels4[:, 10] = np.where(labels4[:, 9] == -1, -1, labels4[:, 10])
labels4[:, 11] = np.where(labels4[:, 12] == -1, -1, labels4[:, 11])
labels4[:, 12] = np.where(labels4[:, 11] == -1, -1, labels4[:, 12])
labels4[:, 13] = np.where(labels4[:, 14] == -1, -1, labels4[:, 13])
labels4[:, 14] = np.where(labels4[:, 13] == -1, -1, labels4[:, 14])
# Augment
img4, labels4 = random_perspective(img4, labels4,
degrees=self.hyp['degrees'],
translate=self.hyp['translate'],
scale=self.hyp['scale'],
shear=self.hyp['shear'],
perspective=self.hyp['perspective'],
border=self.mosaic_border) # border to remove
return img4, labels4
# Ancillary functions --------------------------------------------------------------------------------------------------
def load_image(self, index):
# loads 1 image from dataset, returns img, original hw, resized hw
img = self.imgs[index]
if img is None: # not cached
path = self.img_files[index]
img = cv2.imread(path) # BGR
assert img is not None, 'Image Not Found ' + path
h0, w0 = img.shape[:2] # orig hw
r = self.img_size / max(h0, w0) # resize image to img_size
if r != 1: # always resize down, only resize up if training with augmentation
interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
else:
return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
dtype = img.dtype # uint8
x = np.arange(0, 256, dtype=np.int16)
lut_hue = ((x * r[0]) % 180).astype(dtype)
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
# Histogram equalization
# if random.random() < 0.2:
# for i in range(3):
# img[:, :, i] = cv2.equalizeHist(img[:, :, i])
def replicate(img, labels):
# Replicate labels
h, w = img.shape[:2]
boxes = labels[:, 1:].astype(int)
x1, y1, x2, y2 = boxes.T
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
x1b, y1b, x2b, y2b = boxes[i]
bh, bw = y2b - y1b, x2b - x1b
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
return img, labels
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
shape = img.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better test mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return img, ratio, (dw, dh)
def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
# targets = [cls, xyxy]
height = img.shape[0] + border[0] * 2 # shape(h,w,c)
width = img.shape[1] + border[1] * 2
# Center
C = np.eye(3)
C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
# Perspective
P = np.eye(3)
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
# Rotation and Scale
R = np.eye(3)
a = random.uniform(-degrees, degrees)
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
s = random.uniform(1 - scale, 1 + scale)
# s = 2 ** random.uniform(-scale, scale)
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
# Shear
S = np.eye(3)
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
# Translation
T = np.eye(3)
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
# Combined rotation matrix
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
if perspective:
img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
else: # affine
img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
# Visualize
# import matplotlib.pyplot as plt
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
# ax[0].imshow(img[:, :, ::-1]) # base
# ax[1].imshow(img2[:, :, ::-1]) # warped
# Transform label coordinates
n = len(targets)
if n:
# warp points
#xy = np.ones((n * 4, 3))
xy = np.ones((n * 9, 3))
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]].reshape(n * 9, 2) # x1y1, x2y2, x1y2, x2y1
xy = xy @ M.T # transform
if perspective:
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 18) # rescale
else: # affine
xy = xy[:, :2].reshape(n, 18)
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
landmarks = xy[:, [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]]
mask = np.array(targets[:, 5:] > 0, dtype=np.int32)
landmarks = landmarks * mask
landmarks = landmarks + mask - 1
landmarks = np.where(landmarks < 0, -1, landmarks)
landmarks[:, [0, 2, 4, 6, 8]] = np.where(landmarks[:, [0, 2, 4, 6, 8]] > width, -1, landmarks[:, [0, 2, 4, 6, 8]])
landmarks[:, [1, 3, 5, 7, 9]] = np.where(landmarks[:, [1, 3, 5, 7, 9]] > height, -1,landmarks[:, [1, 3, 5, 7, 9]])
landmarks[:, 0] = np.where(landmarks[:, 1] == -1, -1, landmarks[:, 0])
landmarks[:, 1] = np.where(landmarks[:, 0] == -1, -1, landmarks[:, 1])
landmarks[:, 2] = np.where(landmarks[:, 3] == -1, -1, landmarks[:, 2])
landmarks[:, 3] = np.where(landmarks[:, 2] == -1, -1, landmarks[:, 3])
landmarks[:, 4] = np.where(landmarks[:, 5] == -1, -1, landmarks[:, 4])
landmarks[:, 5] = np.where(landmarks[:, 4] == -1, -1, landmarks[:, 5])
landmarks[:, 6] = np.where(landmarks[:, 7] == -1, -1, landmarks[:, 6])
landmarks[:, 7] = np.where(landmarks[:, 6] == -1, -1, landmarks[:, 7])
landmarks[:, 8] = np.where(landmarks[:, 9] == -1, -1, landmarks[:, 8])
landmarks[:, 9] = np.where(landmarks[:, 8] == -1, -1, landmarks[:, 9])
targets[:,5:] = landmarks
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# # apply angle-based reduction of bounding boxes
# radians = a * math.pi / 180
# reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
# x = (xy[:, 2] + xy[:, 0]) / 2
# y = (xy[:, 3] + xy[:, 1]) / 2
# w = (xy[:, 2] - xy[:, 0]) * reduction
# h = (xy[:, 3] - xy[:, 1]) * reduction
# xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
# clip boxes
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
# filter candidates
i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
targets = targets[i]
targets[:, 1:5] = xy[i]
return img, targets
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1): # box1(4,n), box2(4,n)
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates
def cutout(image, labels):
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
h, w = image.shape[:2]
def bbox_ioa(box1, box2):
# Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
box2 = box2.transpose()
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
# Intersection area
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
# box2 area
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
# Intersection over box2 area
return inter_area / box2_area
# create random masks
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
for s in scales:
mask_h = random.randint(1, int(h * s))
mask_w = random.randint(1, int(w * s))
# box
xmin = max(0, random.randint(0, w) - mask_w // 2)
ymin = max(0, random.randint(0, h) - mask_h // 2)
xmax = min(w, xmin + mask_w)
ymax = min(h, ymin + mask_h)
# apply random color mask
image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
# return unobscured labels
if len(labels) and s > 0.03:
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
labels = labels[ioa < 0.60] # remove >60% obscured labels
return labels
def create_folder(path='./new'):
# Create folder
if os.path.exists(path):
shutil.rmtree(path) # delete output folder
os.makedirs(path) # make new output folder
def flatten_recursive(path='../coco128'):
# Flatten a recursive directory by bringing all files to top level
new_path = Path(path + '_flat')
create_folder(new_path)
for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
shutil.copyfile(file, new_path / Path(file).name)
def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128')
# Convert detection dataset into classification dataset, with one directory per class
path = Path(path) # images dir
shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
files = list(path.rglob('*.*'))
n = len(files) # number of files
for im_file in tqdm(files, total=n):
if im_file.suffix[1:] in img_formats:
# image
im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
h, w = im.shape[:2]
# labels
lb_file = Path(img2label_paths([str(im_file)])[0])
if Path(lb_file).exists():
with open(lb_file, 'r') as f:
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
for j, x in enumerate(lb):
c = int(x[0]) # class
f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
if not f.parent.is_dir():
f.parent.mkdir(parents=True)
b = x[1:] * [w, h, w, h] # box
# b[2:] = b[2:].max() # rectangle to square
b[2:] = b[2:] * 1.2 + 3 # pad
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128')
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
# Arguments
path: Path to images directory
weights: Train, val, test weights (list)
"""
path = Path(path) # images dir
files = list(path.rglob('*.*'))
n = len(files) # number of files
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
[(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
for i, img in tqdm(zip(indices, files), total=n):
if img.suffix[1:] in img_formats:
with open(path / txt[i], 'a') as f:
f.write(str(img) + '\n') # add image to txt file

View File

@ -1,646 +0,0 @@
# General utils
import glob
import logging
import math
import os
import random
import re
import subprocess
import time
from pathlib import Path
import cv2
import numpy as np
import torch
import torchvision
import yaml
from utils.google_utils import gsutil_getsize
from utils.metrics import fitness
from utils.torch_utils import init_torch_seeds
# Settings
torch.set_printoptions(linewidth=320, precision=5, profile='long')
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
def set_logging(rank=-1):
logging.basicConfig(
format="%(message)s",
level=logging.INFO if rank in [-1, 0] else logging.WARN)
def init_seeds(seed=0):
# Initialize random number generator (RNG) seeds
random.seed(seed)
np.random.seed(seed)
init_torch_seeds(seed)
def get_latest_run(search_dir='.'):
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
return max(last_list, key=os.path.getctime) if last_list else ''
def check_online():
# Check internet connectivity
import socket
try:
socket.create_connection(("1.1.1.1", 53)) # check host accesability
return True
except OSError:
return False
def check_git_status():
# Recommend 'git pull' if code is out of date
print(colorstr('github: '), end='')
try:
assert Path('.git').exists(), 'skipping check (not a git repository)'
assert not Path('/workspace').exists(), 'skipping check (Docker image)' # not Path('/.dockerenv').exists()
assert check_online(), 'skipping check (offline)'
cmd = 'git fetch && git config --get remote.origin.url' # github repo url
url = subprocess.check_output(cmd, shell=True).decode()[:-1]
cmd = 'git rev-list $(git rev-parse --abbrev-ref HEAD)..origin/master --count' # commits behind
n = int(subprocess.check_output(cmd, shell=True))
if n > 0:
print(f"⚠️ WARNING: code is out of date by {n} {'commits' if n > 1 else 'commmit'}. "
f"Use 'git pull' to update or 'git clone {url}' to download latest.")
else:
print(f'up to date with {url}')
except Exception as e:
print(e)
def check_requirements(file='requirements.txt'):
# Check installed dependencies meet requirements
import pkg_resources
requirements = pkg_resources.parse_requirements(Path(file).open())
requirements = [x.name + ''.join(*x.specs) if len(x.specs) else x.name for x in requirements]
pkg_resources.require(requirements) # DistributionNotFound or VersionConflict exception if requirements not met
def check_img_size(img_size, s=32):
# Verify img_size is a multiple of stride s
new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
if new_size != img_size:
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
return new_size
def check_file(file):
# Search for file if not found
if os.path.isfile(file) or file == '':
return file
else:
files = glob.glob('./**/' + file, recursive=True) # find file
assert len(files), 'File Not Found: %s' % file # assert file was found
assert len(files) == 1, "Multiple files match '%s', specify exact path: %s" % (file, files) # assert unique
return files[0] # return file
def check_dataset(dict):
# Download dataset if not found locally
val, s = dict.get('val'), dict.get('download')
if val and len(val):
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
if not all(x.exists() for x in val):
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
if s and len(s): # download script
print('Downloading %s ...' % s)
if s.startswith('http') and s.endswith('.zip'): # URL
f = Path(s).name # filename
torch.hub.download_url_to_file(s, f)
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
else: # bash script
r = os.system(s)
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
else:
raise Exception('Dataset not found.')
def make_divisible(x, divisor):
# Returns x evenly divisible by divisor
return math.ceil(x / divisor) * divisor
def clean_str(s):
# Cleans a string by replacing special characters with underscore _
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
def one_cycle(y1=0.0, y2=1.0, steps=100):
# lambda function for sinusoidal ramp from y1 to y2
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
def colorstr(*input):
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
colors = {'black': '\033[30m', # basic colors
'red': '\033[31m',
'green': '\033[32m',
'yellow': '\033[33m',
'blue': '\033[34m',
'magenta': '\033[35m',
'cyan': '\033[36m',
'white': '\033[37m',
'bright_black': '\033[90m', # bright colors
'bright_red': '\033[91m',
'bright_green': '\033[92m',
'bright_yellow': '\033[93m',
'bright_blue': '\033[94m',
'bright_magenta': '\033[95m',
'bright_cyan': '\033[96m',
'bright_white': '\033[97m',
'end': '\033[0m', # misc
'bold': '\033[1m',
'underline': '\033[4m'}
return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
def labels_to_class_weights(labels, nc=80):
# Get class weights (inverse frequency) from training labels
if labels[0] is None: # no labels loaded
return torch.Tensor()
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
classes = labels[:, 0].astype(np.int) # labels = [class xywh]
weights = np.bincount(classes, minlength=nc) # occurrences per class
# Prepend gridpoint count (for uCE training)
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
weights[weights == 0] = 1 # replace empty bins with 1
weights = 1 / weights # number of targets per class
weights /= weights.sum() # normalize
return torch.from_numpy(weights)
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
# Produces image weights based on class_weights and image contents
class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
return image_weights
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
return x
def xyxy2xywh(x):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
y[:, 2] = x[:, 2] - x[:, 0] # width
y[:, 3] = x[:, 3] - x[:, 1] # height
return y
def xywh2xyxy(x):
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
def xywhn2xyxy(x, w=640, h=640, padw=32, padh=32):
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
return y
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
coords[:, [0, 2]] -= pad[0] # x padding
coords[:, [1, 3]] -= pad[1] # y padding
coords[:, :4] /= gain
clip_coords(coords, img0_shape)
return coords
def clip_coords(boxes, img_shape):
# Clip bounding xyxy bounding boxes to image shape (height, width)
boxes[:, 0].clamp_(0, img_shape[1]) # x1
boxes[:, 1].clamp_(0, img_shape[0]) # y1
boxes[:, 2].clamp_(0, img_shape[1]) # x2
boxes[:, 3].clamp_(0, img_shape[0]) # y2
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-9):
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
box2 = box2.T
# Get the coordinates of bounding boxes
if x1y1x2y2: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
else: # transform from xywh to xyxy
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
# Intersection area
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
# Union Area
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
union = w1 * h1 + w2 * h2 - inter + eps
iou = inter / union
if GIoU or DIoU or CIoU:
# convex (smallest enclosing box) width
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
if DIoU:
return iou - rho2 / c2 # DIoU
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi ** 2) * \
torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
with torch.no_grad():
alpha = v / ((1 + eps) - iou + v)
return iou - (rho2 / c2 + v * alpha) # CIoU
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
c_area = cw * ch + eps # convex area
return iou - (c_area - union) / c_area # GIoU
else:
return iou # IoU
def box_iou(box1, box2):
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
"""
Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
box1 (Tensor[N, 4])
box2 (Tensor[M, 4])
Returns:
iou (Tensor[N, M]): the NxM matrix containing the pairwise
IoU values for every element in boxes1 and boxes2
"""
def box_area(box):
# box = 4xn
return (box[2] - box[0]) * (box[3] - box[1])
area1 = box_area(box1.T)
area2 = box_area(box2.T)
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) -
torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
# iou = inter / (area1 + area2 - inter)
return inter / (area1[:, None] + area2 - inter)
def wh_iou(wh1, wh2):
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
wh1 = wh1[:, None] # [N,1,2]
wh2 = wh2[None] # [1,M,2]
inter = torch.min(wh1, wh2).prod(2) # [N,M]
# iou = inter / (area1 + area2 - inter)
return inter / (wh1.prod(2) + wh2.prod(2) - inter)
def jaccard_diou(box_a, box_b, iscrowd:bool=False):
use_batch = True
if box_a.dim() == 2:
use_batch = False
box_a = box_a[None, ...]
box_b = box_b[None, ...]
inter = intersect(box_a, box_b)
area_a = ((box_a[:, :, 2]-box_a[:, :, 0]) *
(box_a[:, :, 3]-box_a[:, :, 1])).unsqueeze(2).expand_as(inter) # [A,B]
area_b = ((box_b[:, :, 2]-box_b[:, :, 0]) *
(box_b[:, :, 3]-box_b[:, :, 1])).unsqueeze(1).expand_as(inter) # [A,B]
union = area_a + area_b - inter
x1 = ((box_a[:, :, 2]+box_a[:, :, 0]) / 2).unsqueeze(2).expand_as(inter)
y1 = ((box_a[:, :, 3]+box_a[:, :, 1]) / 2).unsqueeze(2).expand_as(inter)
x2 = ((box_b[:, :, 2]+box_b[:, :, 0]) / 2).unsqueeze(1).expand_as(inter)
y2 = ((box_b[:, :, 3]+box_b[:, :, 1]) / 2).unsqueeze(1).expand_as(inter)
t1 = box_a[:, :, 1].unsqueeze(2).expand_as(inter)
b1 = box_a[:, :, 3].unsqueeze(2).expand_as(inter)
l1 = box_a[:, :, 0].unsqueeze(2).expand_as(inter)
r1 = box_a[:, :, 2].unsqueeze(2).expand_as(inter)
t2 = box_b[:, :, 1].unsqueeze(1).expand_as(inter)
b2 = box_b[:, :, 3].unsqueeze(1).expand_as(inter)
l2 = box_b[:, :, 0].unsqueeze(1).expand_as(inter)
r2 = box_b[:, :, 2].unsqueeze(1).expand_as(inter)
cr = torch.max(r1, r2)
cl = torch.min(l1, l2)
ct = torch.min(t1, t2)
cb = torch.max(b1, b2)
D = (((x2 - x1)**2 + (y2 - y1)**2) / ((cr-cl)**2 + (cb-ct)**2 + 1e-7))
out = inter / area_a if iscrowd else inter / (union + 1e-7) - D ** 0.7
return out if use_batch else out.squeeze(0)
def non_max_suppression_face(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
"""Performs Non-Maximum Suppression (NMS) on inference results
Returns:
detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
"""
nc = prediction.shape[2] - 15 # number of classes
xc = prediction[..., 4] > conf_thres # candidates
# Settings
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
time_limit = 10.0 # seconds to quit after
redundant = True # require redundant detections
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
merge = False # use merge-NMS
t = time.time()
output = [torch.zeros((0, 16), device=prediction.device)] * prediction.shape[0]
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence
# Cat apriori labels if autolabelling
if labels and len(labels[xi]):
l = labels[xi]
v = torch.zeros((len(l), nc + 15), device=x.device)
v[:, :4] = l[:, 1:5] # box
v[:, 4] = 1.0 # conf
v[range(len(l)), l[:, 0].long() + 15] = 1.0 # cls
x = torch.cat((x, v), 0)
# If none remain process next image
if not x.shape[0]:
continue
# Compute conf
x[:, 15:] *= x[:, 4:5] # conf = obj_conf * cls_conf
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
box = xywh2xyxy(x[:, :4])
# Detections matrix nx6 (xyxy, conf, landmarks, cls)
if multi_label:
i, j = (x[:, 15:] > conf_thres).nonzero(as_tuple=False).T
x = torch.cat((box[i], x[i, j + 15, None], x[:, 5:15] ,j[:, None].float()), 1)
else: # best class only
conf, j = x[:, 15:].max(1, keepdim=True)
x = torch.cat((box, conf, x[:, 5:15], j.float()), 1)[conf.view(-1) > conf_thres]
# Filter by class
if classes is not None:
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
# If none remain process next image
n = x.shape[0] # number of boxes
if not n:
continue
# Batched NMS
c = x[:, 15:16] * (0 if agnostic else max_wh) # classes
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
#if i.shape[0] > max_det: # limit detections
# i = i[:max_det]
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
weights = iou * scores[None] # box weights
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
if redundant:
i = i[iou.sum(1) > 1] # require redundancy
output[xi] = x[i]
if (time.time() - t) > time_limit:
break # time limit exceeded
return output
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
"""Performs Non-Maximum Suppression (NMS) on inference results
Returns:
detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
"""
nc = prediction.shape[2] - 5 # number of classes
xc = prediction[..., 4] > conf_thres # candidates
# Settings
# (pixels) minimum and maximum box width and height
min_wh, max_wh = 2, 4096
#max_det = 300 # maximum number of detections per image
#max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
time_limit = 10.0 # seconds to quit after
redundant = True # require redundant detections
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
merge = False # use merge-NMS
t = time.time()
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence
# Cat apriori labels if autolabelling
if labels and len(labels[xi]):
l = labels[xi]
v = torch.zeros((len(l), nc + 5), device=x.device)
v[:, :4] = l[:, 1:5] # box
v[:, 4] = 1.0 # conf
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
x = torch.cat((x, v), 0)
# If none remain process next image
if not x.shape[0]:
continue
# Compute conf
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
box = xywh2xyxy(x[:, :4])
# Detections matrix nx6 (xyxy, conf, cls)
if multi_label:
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
else: # best class only
conf, j = x[:, 5:].max(1, keepdim=True)
x = torch.cat((box, conf, j.float()), 1)[
conf.view(-1) > conf_thres]
# Filter by class
if classes is not None:
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
# Apply finite constraint
# if not torch.isfinite(x).all():
# x = x[torch.isfinite(x).all(1)]
# Check shape
n = x.shape[0] # number of boxes
if not n: # no boxes
continue
#elif n > max_nms: # excess boxes
# x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
x = x[x[:, 4].argsort(descending=True)] # sort by confidence
# Batched NMS
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
#if i.shape[0] > max_det: # limit detections
# i = i[:max_det]
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
weights = iou * scores[None] # box weights
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
if redundant:
i = i[iou.sum(1) > 1] # require redundancy
output[xi] = x[i]
if (time.time() - t) > time_limit:
print(f'WARNING: NMS time limit {time_limit}s exceeded')
break # time limit exceeded
return output
def strip_optimizer(f='weights/best.pt', s=''): # from utils.general import *; strip_optimizer()
# Strip optimizer from 'f' to finalize training, optionally save as 's'
x = torch.load(f, map_location=torch.device('cpu'))
for key in 'optimizer', 'training_results', 'wandb_id':
x[key] = None
x['epoch'] = -1
x['model'].half() # to FP16
for p in x['model'].parameters():
p.requires_grad = False
torch.save(x, s or f)
mb = os.path.getsize(s or f) / 1E6 # filesize
print('Optimizer stripped from %s,%s %.1fMB' % (f, (' saved as %s,' % s) if s else '', mb))
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
# Print mutation results to evolve.txt (for use with train.py --evolve)
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
if bucket:
url = 'gs://%s/evolve.txt' % bucket
if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
with open('evolve.txt', 'a') as f: # append result
f.write(c + b + '\n')
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
x = x[np.argsort(-fitness(x))] # sort
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
# Save yaml
for i, k in enumerate(hyp.keys()):
hyp[k] = float(x[0, i + 7])
with open(yaml_file, 'w') as f:
results = tuple(x[0, :7])
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
yaml.dump(hyp, f, sort_keys=False)
if bucket:
os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
def apply_classifier(x, model, img, im0):
# applies a second stage classifier to yolo outputs
im0 = [im0] if isinstance(im0, np.ndarray) else im0
for i, d in enumerate(x): # per image
if d is not None and len(d):
d = d.clone()
# Reshape and pad cutouts
b = xyxy2xywh(d[:, :4]) # boxes
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
d[:, :4] = xywh2xyxy(b).long()
# Rescale boxes from img_size to im0 size
scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
# Classes
pred_cls1 = d[:, 5].long()
ims = []
for j, a in enumerate(d): # per item
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
im = cv2.resize(cutout, (224, 224)) # BGR
# cv2.imwrite('test%i.jpg' % j, cutout)
# BGR to RGB, to 3x416x416
im = im[:, :, ::-1].transpose(2, 0, 1)
im = np.ascontiguousarray(
im, dtype=np.float32) # uint8 to float32
im /= 255.0 # 0 - 255 to 0.0 - 1.0
ims.append(im)
pred_cls2 = model(torch.Tensor(ims).to(d.device)
).argmax(1) # classifier prediction
# retain matching class detections
x[i] = x[i][pred_cls1 == pred_cls2]
return x
def increment_path(path, exist_ok=True, sep=''):
# Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
path = Path(path) # os-agnostic
if (path.exists() and exist_ok) or (not path.exists()):
return str(path)
else:
dirs = glob.glob(f"{path}{sep}*") # similar paths
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
i = [int(m.groups()[0]) for m in matches if m] # indices
n = max(i) + 1 if i else 2 # increment number
return f"{path}{sep}{n}" # update path

View File

@ -1,122 +0,0 @@
# Google utils: https://cloud.google.com/storage/docs/reference/libraries
import os
import platform
import subprocess
import time
from pathlib import Path
import requests
import torch
def gsutil_getsize(url=''):
# gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
return eval(s.split(' ')[0]) if len(s) else 0 # bytes
def attempt_download(file, repo='ultralytics/yolov5'):
# Attempt file download if does not exist
file = Path(str(file).strip().replace("'", '').lower())
if not file.exists():
try:
response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...]
tag = response['tag_name'] # i.e. 'v1.0'
except: # fallback plan
assets = ['yolov5.pt', 'yolov5.pt', 'yolov5l.pt', 'yolov5x.pt']
tag = subprocess.check_output('git tag', shell=True).decode('utf-8').split('\n')[-2]
name = file.name
if name in assets:
msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/'
redundant = False # second download option
try: # GitHub
url = f'https://github.com/{repo}/releases/download/{tag}/{name}'
print(f'Downloading {url} to {file}...')
torch.hub.download_url_to_file(url, file)
assert file.exists() and file.stat().st_size > 1E6 # check
except Exception as e: # GCP
print(f'Download error: {e}')
assert redundant, 'No secondary mirror'
url = f'https://storage.googleapis.com/{repo}/ckpt/{name}'
print(f'Downloading {url} to {file}...')
os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights)
finally:
if not file.exists() or file.stat().st_size < 1E6: # check
file.unlink(missing_ok=True) # remove partial downloads
print(f'ERROR: Download failure: {msg}')
print('')
return
def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
# Downloads a file from Google Drive. from yolov5.utils.google_utils import *; gdrive_download()
t = time.time()
file = Path(file)
cookie = Path('cookie') # gdrive cookie
print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
file.unlink(missing_ok=True) # remove existing file
cookie.unlink(missing_ok=True) # remove existing cookie
# Attempt file download
out = "NUL" if platform.system() == "Windows" else "/dev/null"
os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
if os.path.exists('cookie'): # large file
s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
else: # small file
s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
r = os.system(s) # execute, capture return
cookie.unlink(missing_ok=True) # remove existing cookie
# Error check
if r != 0:
file.unlink(missing_ok=True) # remove partial
print('Download error ') # raise Exception('Download error')
return r
# Unzip if archive
if file.suffix == '.zip':
print('unzipping... ', end='')
os.system(f'unzip -q {file}') # unzip
file.unlink() # remove zip to free space
print(f'Done ({time.time() - t:.1f}s)')
return r
def get_token(cookie="./cookie"):
with open(cookie) as f:
for line in f:
if "download" in line:
return line.split()[-1]
return ""
# def upload_blob(bucket_name, source_file_name, destination_blob_name):
# # Uploads a file to a bucket
# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
#
# storage_client = storage.Client()
# bucket = storage_client.get_bucket(bucket_name)
# blob = bucket.blob(destination_blob_name)
#
# blob.upload_from_filename(source_file_name)
#
# print('File {} uploaded to {}.'.format(
# source_file_name,
# destination_blob_name))
#
#
# def download_blob(bucket_name, source_blob_name, destination_file_name):
# # Uploads a blob from a bucket
# storage_client = storage.Client()
# bucket = storage_client.get_bucket(bucket_name)
# blob = bucket.blob(source_blob_name)
#
# blob.download_to_filename(destination_file_name)
#
# print('Blob {} downloaded to {}.'.format(
# source_blob_name,
# destination_file_name))

View File

@ -1,36 +0,0 @@
import torch
def decode_infer(output, stride):
# logging.info(torch.tensor(output.shape[0]))
# logging.info(output.shape)
# # bz is batch-size
# bz = tuple(torch.tensor(output.shape[0]))
# gridsize = tuple(torch.tensor(output.shape[-1]))
# logging.info(gridsize)
sh = torch.tensor(output.shape)
bz = sh[0]
gridsize = sh[-1]
output = output.permute(0, 2, 3, 1)
output = output.view(bz, gridsize, gridsize, self.gt_per_grid, 5+self.numclass)
x1y1, x2y2, conf, prob = torch.split(
output, [2, 2, 1, self.numclass], dim=4)
shiftx = torch.arange(0, gridsize, dtype=torch.float32)
shifty = torch.arange(0, gridsize, dtype=torch.float32)
shifty, shiftx = torch.meshgrid([shiftx, shifty])
shiftx = shiftx.unsqueeze(-1).repeat(bz, 1, 1, self.gt_per_grid)
shifty = shifty.unsqueeze(-1).repeat(bz, 1, 1, self.gt_per_grid)
xy_grid = torch.stack([shiftx, shifty], dim=4).cuda()
x1y1 = (xy_grid+0.5-torch.exp(x1y1))*stride
x2y2 = (xy_grid+0.5+torch.exp(x2y2))*stride
xyxy = torch.cat((x1y1, x2y2), dim=4)
conf = torch.sigmoid(conf)
prob = torch.sigmoid(prob)
output = torch.cat((xyxy, conf, prob), 4)
output = output.view(bz, -1, 5+self.numclass)
return output

View File

@ -1,304 +0,0 @@
# Loss functions
import torch
import torch.nn as nn
import numpy as np
from utils.general import bbox_iou
from utils.torch_utils import is_parallel
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
# return positive, negative label smoothing BCE targets
return 1.0 - 0.5 * eps, 0.5 * eps
class BCEBlurWithLogitsLoss(nn.Module):
# BCEwithLogitLoss() with reduced missing label effects.
def __init__(self, alpha=0.05):
super(BCEBlurWithLogitsLoss, self).__init__()
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
self.alpha = alpha
def forward(self, pred, true):
loss = self.loss_fcn(pred, true)
pred = torch.sigmoid(pred) # prob from logits
dx = pred - true # reduce only missing label effects
# dx = (pred - true).abs() # reduce missing label and false label effects
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
loss *= alpha_factor
return loss.mean()
class FocalLoss(nn.Module):
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
super(FocalLoss, self).__init__()
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
self.gamma = gamma
self.alpha = alpha
self.reduction = loss_fcn.reduction
self.loss_fcn.reduction = 'none' # required to apply FL to each element
def forward(self, pred, true):
loss = self.loss_fcn(pred, true)
# p_t = torch.exp(-loss)
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
pred_prob = torch.sigmoid(pred) # prob from logits
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
modulating_factor = (1.0 - p_t) ** self.gamma
loss *= alpha_factor * modulating_factor
if self.reduction == 'mean':
return loss.mean()
elif self.reduction == 'sum':
return loss.sum()
else: # 'none'
return loss
class QFocalLoss(nn.Module):
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
super(QFocalLoss, self).__init__()
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
self.gamma = gamma
self.alpha = alpha
self.reduction = loss_fcn.reduction
self.loss_fcn.reduction = 'none' # required to apply FL to each element
def forward(self, pred, true):
loss = self.loss_fcn(pred, true)
pred_prob = torch.sigmoid(pred) # prob from logits
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
modulating_factor = torch.abs(true - pred_prob) ** self.gamma
loss *= alpha_factor * modulating_factor
if self.reduction == 'mean':
return loss.mean()
elif self.reduction == 'sum':
return loss.sum()
else: # 'none'
return loss
class WingLoss(nn.Module):
def __init__(self, w=10, e=2):
super(WingLoss, self).__init__()
# https://arxiv.org/pdf/1711.06753v4.pdf Figure 5
self.w = w
self.e = e
self.C = self.w - self.w * np.log(1 + self.w / self.e)
def forward(self, x, t, sigma=1):
weight = torch.ones_like(t)
weight[torch.where(t==-1)] = 0
diff = weight * (x - t)
abs_diff = diff.abs()
flag = (abs_diff.data < self.w).float()
y = flag * self.w * torch.log(1 + abs_diff / self.e) + (1 - flag) * (abs_diff - self.C)
return y.sum()
class LandmarksLoss(nn.Module):
# BCEwithLogitLoss() with reduced missing label effects.
def __init__(self, alpha=1.0):
super(LandmarksLoss, self).__init__()
self.loss_fcn = WingLoss()#nn.SmoothL1Loss(reduction='sum')
self.alpha = alpha
def forward(self, pred, truel, mask):
loss = self.loss_fcn(pred*mask, truel*mask)
return loss / (torch.sum(mask) + 10e-14)
def compute_loss(p, targets, model): # predictions, targets, model
device = targets.device
lcls, lbox, lobj, lmark = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
tcls, tbox, indices, anchors, tlandmarks, lmks_mask = build_targets(p, targets, model) # targets
h = model.hyp # hyperparameters
# Define criteria
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) # weight=model.class_weights)
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
landmarks_loss = LandmarksLoss(1.0)
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
cp, cn = smooth_BCE(eps=0.0)
# Focal loss
g = h['fl_gamma'] # focal loss gamma
if g > 0:
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
# Losses
nt = 0 # number of targets
no = len(p) # number of outputs
balance = [4.0, 1.0, 0.4] if no == 3 else [4.0, 1.0, 0.4, 0.1] # P3-5 or P3-6
for i, pi in enumerate(p): # layer index, layer predictions
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
n = b.shape[0] # number of targets
if n:
nt += n # cumulative targets
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
# Regression
pxy = ps[:, :2].sigmoid() * 2. - 0.5
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
pbox = torch.cat((pxy, pwh), 1) # predicted box
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
lbox += (1.0 - iou).mean() # iou loss
# Objectness
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
# Classification
if model.nc > 1: # cls loss (only if multiple classes)
t = torch.full_like(ps[:, 15:], cn, device=device) # targets
t[range(n), tcls[i]] = cp
lcls += BCEcls(ps[:, 15:], t) # BCE
# Append targets to text file
# with open('targets.txt', 'a') as file:
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
#landmarks loss
#plandmarks = ps[:,5:15].sigmoid() * 8. - 4.
plandmarks = ps[:,5:15]
plandmarks[:, 0:2] = plandmarks[:, 0:2] * anchors[i]
plandmarks[:, 2:4] = plandmarks[:, 2:4] * anchors[i]
plandmarks[:, 4:6] = plandmarks[:, 4:6] * anchors[i]
plandmarks[:, 6:8] = plandmarks[:, 6:8] * anchors[i]
plandmarks[:, 8:10] = plandmarks[:,8:10] * anchors[i]
lmark += landmarks_loss(plandmarks, tlandmarks[i], lmks_mask[i])
lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss
s = 3 / no # output count scaling
lbox *= h['box'] * s
lobj *= h['obj'] * s * (1.4 if no == 4 else 1.)
lcls *= h['cls'] * s
lmark *= h['landmark'] * s
bs = tobj.shape[0] # batch size
loss = lbox + lobj + lcls + lmark
return loss * bs, torch.cat((lbox, lobj, lcls, lmark, loss)).detach()
def build_targets(p, targets, model):
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
na, nt = det.na, targets.shape[0] # number of anchors, targets
tcls, tbox, indices, anch, landmarks, lmks_mask = [], [], [], [], [], []
#gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
gain = torch.ones(17, device=targets.device)
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
g = 0.5 # bias
off = torch.tensor([[0, 0],
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
], device=targets.device).float() * g # offsets
for i in range(det.nl):
anchors = det.anchors[i]
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
#landmarks 10
gain[6:16] = torch.tensor(p[i].shape)[[3, 2, 3, 2, 3, 2, 3, 2, 3, 2]] # xyxy gain
# Match targets to anchors
t = targets * gain
if nt:
# Matches
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
t = t[j] # filter
# Offsets
gxy = t[:, 2:4] # grid xy
gxi = gain[[2, 3]] - gxy # inverse
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
j = torch.stack((torch.ones_like(j), j, k, l, m))
t = t.repeat((5, 1, 1))[j]
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
else:
t = targets[0]
offsets = 0
# Define
b, c = t[:, :2].long().T # image, class
gxy = t[:, 2:4] # grid xy
gwh = t[:, 4:6] # grid wh
gij = (gxy - offsets).long()
gi, gj = gij.T # grid xy indices
# Append
a = t[:, 16].long() # anchor indices
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
anch.append(anchors[a]) # anchors
tcls.append(c) # class
#landmarks
lks = t[:,6:16]
#lks_mask = lks > 0
#lks_mask = lks_mask.float()
lks_mask = torch.where(lks < 0, torch.full_like(lks, 0.), torch.full_like(lks, 1.0))
#应该是关键点的坐标除以anch的宽高才对便于模型学习。使用gwh会导致不同关键点的编码不同没有统一的参考标准
lks[:, [0, 1]] = (lks[:, [0, 1]] - gij)
lks[:, [2, 3]] = (lks[:, [2, 3]] - gij)
lks[:, [4, 5]] = (lks[:, [4, 5]] - gij)
lks[:, [6, 7]] = (lks[:, [6, 7]] - gij)
lks[:, [8, 9]] = (lks[:, [8, 9]] - gij)
'''
#anch_w = torch.ones(5, device=targets.device).fill_(anchors[0][0])
#anch_wh = torch.ones(5, device=targets.device)
anch_f_0 = (a == 0).unsqueeze(1).repeat(1, 5)
anch_f_1 = (a == 1).unsqueeze(1).repeat(1, 5)
anch_f_2 = (a == 2).unsqueeze(1).repeat(1, 5)
lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_0, lks[:, [0, 2, 4, 6, 8]] / anchors[0][0], lks[:, [0, 2, 4, 6, 8]])
lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_1, lks[:, [0, 2, 4, 6, 8]] / anchors[1][0], lks[:, [0, 2, 4, 6, 8]])
lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_2, lks[:, [0, 2, 4, 6, 8]] / anchors[2][0], lks[:, [0, 2, 4, 6, 8]])
lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_0, lks[:, [1, 3, 5, 7, 9]] / anchors[0][1], lks[:, [1, 3, 5, 7, 9]])
lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_1, lks[:, [1, 3, 5, 7, 9]] / anchors[1][1], lks[:, [1, 3, 5, 7, 9]])
lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_2, lks[:, [1, 3, 5, 7, 9]] / anchors[2][1], lks[:, [1, 3, 5, 7, 9]])
#new_lks = lks[lks_mask>0]
#print('new_lks: min --- ', torch.min(new_lks), ' max --- ', torch.max(new_lks))
lks_mask_1 = torch.where(lks < -3, torch.full_like(lks, 0.), torch.full_like(lks, 1.0))
lks_mask_2 = torch.where(lks > 3, torch.full_like(lks, 0.), torch.full_like(lks, 1.0))
lks_mask_new = lks_mask * lks_mask_1 * lks_mask_2
lks_mask_new[:, 0] = lks_mask_new[:, 0] * lks_mask_new[:, 1]
lks_mask_new[:, 1] = lks_mask_new[:, 0] * lks_mask_new[:, 1]
lks_mask_new[:, 2] = lks_mask_new[:, 2] * lks_mask_new[:, 3]
lks_mask_new[:, 3] = lks_mask_new[:, 2] * lks_mask_new[:, 3]
lks_mask_new[:, 4] = lks_mask_new[:, 4] * lks_mask_new[:, 5]
lks_mask_new[:, 5] = lks_mask_new[:, 4] * lks_mask_new[:, 5]
lks_mask_new[:, 6] = lks_mask_new[:, 6] * lks_mask_new[:, 7]
lks_mask_new[:, 7] = lks_mask_new[:, 6] * lks_mask_new[:, 7]
lks_mask_new[:, 8] = lks_mask_new[:, 8] * lks_mask_new[:, 9]
lks_mask_new[:, 9] = lks_mask_new[:, 8] * lks_mask_new[:, 9]
'''
lks_mask_new = lks_mask
lmks_mask.append(lks_mask_new)
landmarks.append(lks)
#print('lks: ', lks.size())
return tcls, tbox, indices, anch, landmarks, lmks_mask

View File

@ -1,200 +0,0 @@
# Model validation metrics
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
from . import general
def fitness(x):
# Model fitness as a weighted combination of metrics
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
return (x[:, :4] * w).sum(1)
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='precision-recall_curve.png', names=[]):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
# Arguments
tp: True positives (nparray, nx1 or nx10).
conf: Objectness value from 0-1 (nparray).
pred_cls: Predicted object classes (nparray).
target_cls: True object classes (nparray).
plot: Plot precision-recall curve at mAP@0.5
save_dir: Plot save directory
# Returns
The average precision as computed in py-faster-rcnn.
"""
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes = np.unique(target_cls)
# Create Precision-Recall curve and compute AP for each class
px, py = np.linspace(0, 1, 1000), [] # for plotting
pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
for ci, c in enumerate(unique_classes):
i = pred_cls == c
n_l = (target_cls == c).sum() # number of labels
n_p = i.sum() # number of predictions
if n_p == 0 or n_l == 0:
continue
else:
# Accumulate FPs and TPs
fpc = (1 - tp[i]).cumsum(0)
tpc = tp[i].cumsum(0)
# Recall
recall = tpc / (n_l + 1e-16) # recall curve
r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases
# Precision
precision = tpc / (tpc + fpc) # precision curve
p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score
# AP from recall-precision curve
for j in range(tp.shape[1]):
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
if plot and (j == 0):
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
# Compute F1 score (harmonic mean of precision and recall)
f1 = 2 * p * r / (p + r + 1e-16)
if plot:
plot_pr_curve(px, py, ap, save_dir, names)
return p, r, ap, f1, unique_classes.astype('int32')
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves
# Arguments
recall: The recall curve (list)
precision: The precision curve (list)
# Returns
Average precision, precision curve, recall curve
"""
# Append sentinel values to beginning and end
mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
mpre = np.concatenate(([1.], precision, [0.]))
# Compute the precision envelope
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
# Integrate area under curve
method = 'interp' # methods: 'continuous', 'interp'
if method == 'interp':
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
else: # 'continuous'
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
return ap, mpre, mrec
class ConfusionMatrix:
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
def __init__(self, nc, conf=0.25, iou_thres=0.45):
self.matrix = np.zeros((nc + 1, nc + 1))
self.nc = nc # number of classes
self.conf = conf
self.iou_thres = iou_thres
def process_batch(self, detections, labels):
"""
Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
labels (Array[M, 5]), class, x1, y1, x2, y2
Returns:
None, updates confusion matrix accordingly
"""
detections = detections[detections[:, 4] > self.conf]
gt_classes = labels[:, 0].int()
detection_classes = detections[:, 5].int()
iou = general.box_iou(labels[:, 1:], detections[:, :4])
x = torch.where(iou > self.iou_thres)
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
else:
matches = np.zeros((0, 3))
n = matches.shape[0] > 0
m0, m1, _ = matches.transpose().astype(np.int16)
for i, gc in enumerate(gt_classes):
j = m0 == i
if n and sum(j) == 1:
self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
else:
self.matrix[gc, self.nc] += 1 # background FP
if n:
for i, dc in enumerate(detection_classes):
if not any(m1 == i):
self.matrix[self.nc, dc] += 1 # background FN
def matrix(self):
return self.matrix
def plot(self, save_dir='', names=()):
try:
import seaborn as sn
array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
fig = plt.figure(figsize=(12, 9), tight_layout=True)
sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
xticklabels=names + ['background FN'] if labels else "auto",
yticklabels=names + ['background FP'] if labels else "auto").set_facecolor((1, 1, 1))
fig.axes[0].set_xlabel('True')
fig.axes[0].set_ylabel('Predicted')
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
except Exception as e:
pass
def print(self):
for i in range(self.nc + 1):
print(' '.join(map(str, self.matrix[i])))
# Plots ----------------------------------------------------------------------------------------------------------------
def plot_pr_curve(px, py, ap, save_dir='.', names=()):
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
py = np.stack(py, axis=1)
if 0 < len(names) < 21: # show mAP in legend if < 10 classes
for i, y in enumerate(py.T):
ax.plot(px, y, linewidth=1, label=f'{names[i]} %.3f' % ap[i, 0]) # plot(recall, precision)
else:
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
ax.set_xlabel('Recall')
ax.set_ylabel('Precision')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
fig.savefig(Path(save_dir) / 'precision_recall_curve.png', dpi=250)

View File

@ -1,413 +0,0 @@
# Plotting utils
import glob
import math
import os
import random
from copy import copy
from pathlib import Path
import cv2
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import torch
import yaml
from PIL import Image, ImageDraw
from scipy.signal import butter, filtfilt
from utils.general import xywh2xyxy, xyxy2xywh
from utils.metrics import fitness
# Settings
matplotlib.rc('font', **{'size': 11})
matplotlib.use('Agg') # for writing to files only
def color_list():
# Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
def hex2rgb(h):
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
return [hex2rgb(h) for h in plt.rcParams['axes.prop_cycle'].by_key()['color']]
def hist2d(x, y, n=100):
# 2d histogram used in labels.png and evolve.png
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
return np.log(hist[xidx, yidx])
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
def butter_lowpass(cutoff, fs, order):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
return butter(order, normal_cutoff, btype='low', analog=False)
b, a = butter_lowpass(cutoff, fs, order=order)
return filtfilt(b, a, data) # forward-backward filter
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
# Plots one bounding box on image img
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
# Compares the two methods for width-height anchor multiplication
# https://github.com/ultralytics/yolov3/issues/168
x = np.arange(-4.0, 4.0, .1)
ya = np.exp(x)
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
fig = plt.figure(figsize=(6, 3), tight_layout=True)
plt.plot(x, ya, '.-', label='YOLOv3')
plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2')
plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6')
plt.xlim(left=-4, right=4)
plt.ylim(bottom=0, top=6)
plt.xlabel('input')
plt.ylabel('output')
plt.grid()
plt.legend()
fig.savefig('comparison.png', dpi=200)
def output_to_target(output):
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
targets = []
for i, o in enumerate(output):
for *box, conf, cls in o.cpu().numpy():
targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
return np.array(targets)
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
# Plot image grid with labels
if isinstance(images, torch.Tensor):
images = images.cpu().float().numpy()
if isinstance(targets, torch.Tensor):
targets = targets.cpu().numpy()
# un-normalise
if np.max(images[0]) <= 1:
images *= 255
tl = 3 # line thickness
tf = max(tl - 1, 1) # font thickness
bs, _, h, w = images.shape # batch size, _, height, width
bs = min(bs, max_subplots) # limit plot images
ns = np.ceil(bs ** 0.5) # number of subplots (square)
# Check if we should resize
scale_factor = max_size / max(h, w)
if scale_factor < 1:
h = math.ceil(scale_factor * h)
w = math.ceil(scale_factor * w)
# colors = color_list() # list of colors
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
for i, img in enumerate(images):
if i == max_subplots: # if last batch has fewer images than we expect
break
block_x = int(w * (i // ns))
block_y = int(h * (i % ns))
img = img.transpose(1, 2, 0)
if scale_factor < 1:
img = cv2.resize(img, (w, h))
mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
if len(targets) > 0:
image_targets = targets[targets[:, 0] == i]
boxes = xywh2xyxy(image_targets[:, 2:6]).T
classes = image_targets[:, 1].astype('int')
labels = image_targets.shape[1] == 6 # labels if no conf column
conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
if boxes.shape[1]:
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
boxes[[0, 2]] *= w # scale to pixels
boxes[[1, 3]] *= h
elif scale_factor < 1: # absolute coords need scale if image scales
boxes *= scale_factor
boxes[[0, 2]] += block_x
boxes[[1, 3]] += block_y
for j, box in enumerate(boxes.T):
cls = int(classes[j])
# color = colors[cls % len(colors)]
cls = names[cls] if names else cls
if labels or conf[j] > 0.25: # 0.25 conf thresh
label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
plot_one_box(box, mosaic, label=label, color=None, line_thickness=tl)
# Draw image filename labels
if paths:
label = Path(paths[i]).name[:40] # trim to 40 char
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
lineType=cv2.LINE_AA)
# Image border
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
if fname:
r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
# cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
Image.fromarray(mosaic).save(fname) # PIL save
return mosaic
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
# Plot LR simulating training for full epochs
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
y = []
for _ in range(epochs):
scheduler.step()
y.append(optimizer.param_groups[0]['lr'])
plt.plot(y, '.-', label='LR')
plt.xlabel('epoch')
plt.ylabel('LR')
plt.grid()
plt.xlim(0, epochs)
plt.ylim(0)
plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
plt.close()
def plot_test_txt(): # from utils.plots import *; plot_test()
# Plot test.txt histograms
x = np.loadtxt('test.txt', dtype=np.float32)
box = xyxy2xywh(x[:, :4])
cx, cy = box[:, 0], box[:, 1]
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
ax.set_aspect('equal')
plt.savefig('hist2d.png', dpi=300)
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
ax[0].hist(cx, bins=600)
ax[1].hist(cy, bins=600)
plt.savefig('hist1d.png', dpi=200)
def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
# Plot targets.txt histograms
x = np.loadtxt('targets.txt', dtype=np.float32).T
s = ['x targets', 'y targets', 'width targets', 'height targets']
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
ax = ax.ravel()
for i in range(4):
ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
ax[i].legend()
ax[i].set_title(s[i])
plt.savefig('targets.jpg', dpi=200)
def plot_study_txt(path='study/', x=None): # from utils.plots import *; plot_study_txt()
# Plot study.txt generated by test.py
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
ax = ax.ravel()
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']]:
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
x = np.arange(y.shape[1]) if x is None else np.array(x)
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
for i in range(7):
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
ax[i].set_title(s[i])
j = y[3].argmax() + 1
ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8,
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
ax2.grid()
ax2.set_yticks(np.arange(30, 60, 5))
ax2.set_xlim(0, 30)
ax2.set_ylim(29, 51)
ax2.set_xlabel('GPU Speed (ms/img)')
ax2.set_ylabel('COCO AP val')
ax2.legend(loc='lower right')
plt.savefig('test_study.png', dpi=300)
def plot_labels(labels, save_dir=Path(''), loggers=None):
# plot dataset labels
print('Plotting labels... ')
c, b = labels[:, 0], labels[:, 1:5].transpose() # classes, boxes
nc = int(c.max() + 1) # number of classes
colors = color_list()
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
# seaborn correlogram
sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
plt.close()
# matplotlib labels
matplotlib.use('svg') # faster
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
ax[0].set_xlabel('classes')
sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
# rectangles
labels[:, 1:3] = 0.5 # center
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
# for cls, *box in labels[:1000]:
# ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot
ax[1].imshow(img)
ax[1].axis('off')
for a in [0, 1, 2, 3]:
for s in ['top', 'right', 'left', 'bottom']:
ax[a].spines[s].set_visible(False)
plt.savefig(save_dir / 'labels.jpg', dpi=200)
matplotlib.use('Agg')
plt.close()
# loggers
for k, v in loggers.items() or {}:
if k == 'wandb' and v:
v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]})
def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
# Plot hyperparameter evolution results in evolve.txt
with open(yaml_file) as f:
hyp = yaml.load(f, Loader=yaml.SafeLoader)
x = np.loadtxt('evolve.txt', ndmin=2)
f = fitness(x)
# weights = (f - f.min()) ** 2 # for weighted results
plt.figure(figsize=(10, 12), tight_layout=True)
matplotlib.rc('font', **{'size': 8})
for i, (k, v) in enumerate(hyp.items()):
y = x[:, i + 7]
# mu = (y * weights).sum() / weights.sum() # best weighted result
mu = y[f.argmax()] # best single result
plt.subplot(6, 5, i + 1)
plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
plt.plot(mu, f.max(), 'k+', markersize=15)
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
if i % 5 != 0:
plt.yticks([])
print('%15s: %.3g' % (k, mu))
plt.savefig('evolve.png', dpi=200)
print('\nPlot saved as evolve.png')
def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
files = list(Path(save_dir).glob('frames*.txt'))
for fi, f in enumerate(files):
try:
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
n = results.shape[1] # number of rows
x = np.arange(start, min(stop, n) if stop else n)
results = results[:, x]
t = (results[0] - results[0].min()) # set t0=0s
results[0] = x
for i, a in enumerate(ax):
if i < len(results):
label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
a.set_title(s[i])
a.set_xlabel('time (s)')
# if fi == len(files) - 1:
# a.set_ylim(bottom=0)
for side in ['top', 'right']:
a.spines[side].set_visible(False)
else:
a.remove()
except Exception as e:
print('Warning: Plotting error for %s; %s' % (f, e))
ax[1].legend()
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
# Plot training 'results*.txt', overlaying train and val losses
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
n = results.shape[1] # number of rows
x = range(start, min(stop, n) if stop else n)
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
ax = ax.ravel()
for i in range(5):
for j in [i, i + 5]:
y = results[j, x]
ax[i].plot(x, y, marker='.', label=s[j])
# y_smooth = butter_lowpass_filtfilt(y)
# ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
ax[i].set_title(t[i])
ax[i].legend()
ax[i].set_ylabel(f) if i == 0 else None # add filename
fig.savefig(f.replace('.txt', '.png'), dpi=200)
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
# Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
ax = ax.ravel()
s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
if bucket:
# files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
files = ['results%g.txt' % x for x in id]
c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
os.system(c)
else:
files = list(Path(save_dir).glob('results*.txt'))
assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
for fi, f in enumerate(files):
try:
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
n = results.shape[1] # number of rows
x = range(start, min(stop, n) if stop else n)
for i in range(10):
y = results[i, x]
if i in [0, 1, 2, 5, 6, 7]:
y[y == 0] = np.nan # don't show zero loss values
# y /= y[0] # normalize
label = labels[fi] if len(labels) else f.stem
ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
ax[i].set_title(s[i])
# if i in [5, 6, 7]: # share train and val loss y axes
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
except Exception as e:
print('Warning: Plotting error for %s; %s' % (f, e))
ax[1].legend()
fig.savefig(Path(save_dir) / 'results.png', dpi=200)

View File

@ -1,294 +0,0 @@
# PyTorch utils
import logging
import math
import os
import subprocess
import time
from contextlib import contextmanager
from copy import deepcopy
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torchvision
try:
import thop # for FLOPS computation
except ImportError:
thop = None
logger = logging.getLogger(__name__)
@contextmanager
def torch_distributed_zero_first(local_rank: int):
"""
Decorator to make all processes in distributed training wait for each local_master to do something.
"""
if local_rank not in [-1, 0]:
torch.distributed.barrier()
yield
if local_rank == 0:
torch.distributed.barrier()
def init_torch_seeds(seed=0):
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
torch.manual_seed(seed)
if seed == 0: # slower, more reproducible
cudnn.benchmark, cudnn.deterministic = False, True
else: # faster, less reproducible
cudnn.benchmark, cudnn.deterministic = True, False
def git_describe():
# return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
if Path('.git').exists():
return subprocess.check_output('git describe --tags --long --always', shell=True).decode('utf-8')[:-1]
else:
return ''
def select_device(device='', batch_size=None):
# device = 'cpu' or '0' or '0,1,2,3'
s = f'YOLOv5 {git_describe()} torch {torch.__version__} ' # string
cpu = device.lower() == 'cpu'
if cpu:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
elif device: # non-cpu device requested
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
cuda = not cpu and torch.cuda.is_available()
if cuda:
n = torch.cuda.device_count()
if n > 1 and batch_size: # check that batch_size is compatible with device_count
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
space = ' ' * len(s)
for i, d in enumerate(device.split(',') if device else range(n)):
p = torch.cuda.get_device_properties(i)
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
else:
s += 'CPU\n'
logger.info(s) # skip a line
return torch.device('cuda:0' if cuda else 'cpu')
def time_synchronized():
# pytorch-accurate time
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
def profile(x, ops, n=100, device=None):
# profile a pytorch module or list of modules. Example usage:
# x = torch.randn(16, 3, 640, 640) # input
# m1 = lambda x: x * torch.sigmoid(x)
# m2 = nn.SiLU()
# profile(x, [m1, m2], n=100) # profile speed over 100 iterations
device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
x = x.to(device)
x.requires_grad = True
print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
for m in ops if isinstance(ops, list) else [ops]:
m = m.to(device) if hasattr(m, 'to') else m # device
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
try:
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
except:
flops = 0
for _ in range(n):
t[0] = time_synchronized()
y = m(x)
t[1] = time_synchronized()
try:
_ = y.sum().backward()
t[2] = time_synchronized()
except: # no backward method
t[2] = float('nan')
dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
print(f'{p:12.4g}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
def is_parallel(model):
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
def intersect_dicts(da, db, exclude=()):
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
def initialize_weights(model):
for m in model.modules():
t = type(m)
if t is nn.Conv2d:
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif t is nn.BatchNorm2d:
m.eps = 1e-3
m.momentum = 0.03
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
m.inplace = True
def find_modules(model, mclass=nn.Conv2d):
# Finds layer indices matching module class 'mclass'
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
def sparsity(model):
# Return global model sparsity
a, b = 0., 0.
for p in model.parameters():
a += p.numel()
b += (p == 0).sum()
return b / a
def prune(model, amount=0.3):
# Prune model to requested global sparsity
import torch.nn.utils.prune as prune
print('Pruning model... ', end='')
for name, m in model.named_modules():
if isinstance(m, nn.Conv2d):
prune.l1_unstructured(m, name='weight', amount=amount) # prune
prune.remove(m, 'weight') # make permanent
print(' %.3g global sparsity' % sparsity(model))
def fuse_conv_and_bn(conv, bn):
# Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
fusedconv = nn.Conv2d(conv.in_channels,
conv.out_channels,
kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding,
groups=conv.groups,
bias=True).requires_grad_(False).to(conv.weight.device)
# prepare filters
w_conv = conv.weight.clone().view(conv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
# prepare spatial bias
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
return fusedconv
def model_info(model, verbose=False, img_size=640):
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
n_p = sum(x.numel() for x in model.parameters()) # number parameters
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
if verbose:
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
try: # FLOPS
from thop import profile
stride = int(model.stride.max()) if hasattr(model, 'stride') else 32
img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
except (ImportError, Exception):
fs = ''
logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
def load_classifier(name='resnet101', n=2):
# Loads a pretrained model reshaped to n-class output
model = torchvision.models.__dict__[name](pretrained=True)
# ResNet model properties
# input_size = [3, 224, 224]
# input_space = 'RGB'
# input_range = [0, 1]
# mean = [0.485, 0.456, 0.406]
# std = [0.229, 0.224, 0.225]
# Reshape output to n classes
filters = model.fc.weight.shape[1]
model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
model.fc.out_features = n
return model
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
# scales img(bs,3,y,x) by ratio constrained to gs-multiple
if ratio == 1.0:
return img
else:
h, w = img.shape[2:]
s = (int(h * ratio), int(w * ratio)) # new size
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
if not same_shape: # pad/crop img
h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
def copy_attr(a, b, include=(), exclude=()):
# Copy attributes from b to a, options to only include [...] and to exclude [...]
for k, v in b.__dict__.items():
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
continue
else:
setattr(a, k, v)
class ModelEMA:
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
Keep a moving average of everything in the model state_dict (parameters and buffers).
This is intended to allow functionality like
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
A smoothed version of the weights is necessary for some training schemes to perform well.
This class is sensitive where it is initialized in the sequence of model init,
GPU assignment and distributed training wrappers.
"""
def __init__(self, model, decay=0.9999, updates=0):
# Create EMA
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
# if next(model.parameters()).device.type != 'cpu':
# self.ema.half() # FP16 EMA
self.updates = updates # number of EMA updates
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
for p in self.ema.parameters():
p.requires_grad_(False)
def update(self, model):
# Update EMA parameters
with torch.no_grad():
self.updates += 1
d = self.decay(self.updates)
msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
for k, v in self.ema.state_dict().items():
if v.dtype.is_floating_point:
v *= d
v += (1. - d) * msd[k].detach()
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
# Update EMA attributes
copy_attr(self.ema, model, include, exclude)

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -23,7 +23,7 @@
#define APPLICATION_KEY "your application key" #define APPLICATION_KEY "P6Kiuy2L4CifuBuK"
#define ENROLL_FILENAME "BIRData.dat" #define ENROLL_FILENAME "BIRData.dat"
#define CAPTURE_FILENAME "BIRCapData.dat" #define CAPTURE_FILENAME "BIRCapData.dat"
#define SILHOUETTE_FILENAME "silhouette.bmp" #define SILHOUETTE_FILENAME "silhouette.bmp"
@ -193,7 +193,7 @@ int main(int argc, char **argv)
if ( fp != NULL ) { if ( fp != NULL ) {
fwrite(ucEnrolledBIR, sizeof(unsigned char), datasize, fp); fwrite(ucEnrolledBIR, sizeof(unsigned char), datasize, fp);
fclose(fp); fclose(fp);
printf(" FILE: %s (DataSize=%d)\n", ENROLL_FILENAME, datasize); printf(" FILE: %s (DataSize=%ld)\n", ENROLL_FILENAME, datasize);
} }
} }
@ -296,7 +296,7 @@ int main(int argc, char **argv)
if ( fp != NULL ) { if ( fp != NULL ) {
fwrite(ucCapturedBIR, sizeof(unsigned char), datasize, fp); fwrite(ucCapturedBIR, sizeof(unsigned char), datasize, fp);
fclose(fp); fclose(fp);
printf(" FILE: %s (DataSize=%d)\n", CAPTURE_FILENAME, datasize); printf(" FILE: %s (DataSize=%ld)\n", CAPTURE_FILENAME, datasize);
} }
// ----------------------------------------------------------------- // -----------------------------------------------------------------

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,15 @@
total 5396
-rw-rw-r-- 1 carl carl 253 Dec 19 2017 PvAPI.INI
-rw-rw-r-- 1 carl carl 2706 Oct 21 2021 F3BC4BSP.DAT
-rwxr-xr-x 1 carl carl 237104 Mar 17 2022 libf3bc4com.so
-rwxrwxr-x 1 carl carl 2045856 Mar 17 2022 libf3bc4cap.so
-rwxr-xr-x 1 carl carl 1350272 Mar 17 2022 libf3bc4mat.so
-rwxr-xr-x 1 carl carl 499824 Mar 17 2022 libf3bc4bsp.so
-rwxr-xr-x 1 carl carl 146328 Mar 17 2022 libf3bc4bio.so
-rw-r--r-- 1 carl carl 22 Mar 17 2022 pvfwvl.txt
-rw-rw-r-- 1 carl carl 403 May 31 22:36 F3BC4SDK.LIC
-rw-rw-rw- 1 root root 1048224 Jun 7 17:40 PvAPITrc01.dat
drwxrwxr-x 5 carl carl 4096 Jun 7 20:17 ..
-rw-rw-rw- 1 carl carl 159033 Jun 7 20:21 PvAPITrc.dat
-rw-rw-r-- 1 carl carl 0 Jun 7 20:22 foo
drwxr-xr-x 2 carl carl 4096 Jun 7 20:22 .

View File

@ -0,0 +1,16 @@
total 5428
-rw-rw-r-- 1 carl carl 253 Dec 19 2017 PvAPI.INI
-rw-rw-r-- 1 carl carl 2706 Oct 21 2021 F3BC4BSP.DAT
-rwxr-xr-x 1 carl carl 237104 Mar 17 2022 libf3bc4com.so
-rwxrwxr-x 1 carl carl 2045856 Mar 17 2022 libf3bc4cap.so
-rwxr-xr-x 1 carl carl 1350272 Mar 17 2022 libf3bc4mat.so
-rwxr-xr-x 1 carl carl 499824 Mar 17 2022 libf3bc4bsp.so
-rwxr-xr-x 1 carl carl 146328 Mar 17 2022 libf3bc4bio.so
-rw-r--r-- 1 carl carl 22 Mar 17 2022 pvfwvl.txt
-rw-rw-r-- 1 carl carl 403 May 31 22:36 F3BC4SDK.LIC
-rw-rw-rw- 1 root root 1048224 Jun 7 17:40 PvAPITrc01.dat
drwxrwxr-x 5 carl carl 4096 Jun 7 20:17 ..
-rw-rw-r-- 1 carl carl 786 Jun 7 20:22 foo
-rw-rw-rw- 1 carl carl 187399 Jun 7 20:22 PvAPITrc.dat
-rw-rw-r-- 1 carl carl 0 Jun 7 20:22 foobar
drwxr-xr-x 2 carl carl 4096 Jun 7 20:22 .

View File

@ -27,6 +27,12 @@ $(VERIFY).o : $(VERIFY).c
clean: clean:
$(RM) *~ *.o $(IDENTIFY) $(VERIFY) $(RM) *~ *.o $(IDENTIFY) $(VERIFY)
handjob: handjob.o
$(CC) -o handjob handjob.o $(LDFLAGS) $(LDLIBS)
handjob.o : handjob.c
$(CC) $(CFLAGS) handjob.c
%.o: %.c %.o: %.c
$(CC) $(CFLAGS) -c -o $@ $< $(CC) $(CFLAGS) -c -o $@ $<

View File

@ -0,0 +1,10 @@
ACTION!="add",\
KERNEL=="fjveincam*"\
DRIVERS=="fjveincam",\
MODE="0666",
SUBSYSTEM=="usbmisc",\
ATTRS{idVendor}=="04c5",\
ATTRS{idProduct}=="1526",\
SYMLINK+="usb/fjveincam%n",\
RUN+="/bin/bash -c 'date >> /tmp/fjpv'",\
RUN+="/bin/bash -c 'echo $kernel _ $devpath _ $number id=$id MM=$major:$minor $name $sys >> /tmp/fjpv'"

View File

@ -0,0 +1,937 @@
/**
* USB PalmSecure Sensor driver (kernel-2.6)
*
* Copyright (C) 2012 FUJITSU FRONTECH LIMITED
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* Notes:
* Heavily based on usb_skeleton.c
* Copyright (C) 2001-2004 Greg Kroah-Hartman (greg@kroah.com)
*
* History:
*
* 2012-07-06 - V31L01
* - first version
*
* Problems? Try...
* lsusb or lsusb -vd MANU:PROD // swap in the device values << FUJITSU PalmSecure-F Pro
* sudo udevadm info -a -n /dev/usb/fjveincam0 // get infor about the device << major=180 minor=0
* cat /sys/class/usbmisc/fjveincam0/ * //
* ls -al /sys/class/usbmisc/fjveincam0/device/driver/module - coresize,
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h> //+
#include <linux/slab.h>
#include <linux/module.h>
// kref.h-
#include <linux/uaccess.h>
#include <linux/mutex.h> //+
#include <linux/sched.h> //+
#include <linux/usb.h>
/* Define these values to match your devices */
#define VENDOR_ID 0x04C5
#define PRODUCT_ID 0x1526
/* table of devices that work with this driver */
static struct usb_device_id fjveincam_table [] = {
{ USB_DEVICE(VENDOR_ID, PRODUCT_ID) },
{ } /* Terminating entry */
};
MODULE_DEVICE_TABLE(usb, fjveincam_table);
/* Get a minor range for your devices from the usb maintainer */
#define USB_subminor_BASE 160
/* Structure to hold all of our device specific stuff */
struct fjveincam {
struct usb_device *udev;
unsigned char subminor; /* minor number - used in disconnect() */
char confirmed; /* Not zero if the device is used (Not in phase of confirming) */
int open_count; /* count the number of openers */
char *obuf, *ibuf; /* transfer buffers */
char bulk_in_ep; /* Endpoint assignments */
char bulk_out_ep; /* Endpoint assignments */
wait_queue_head_t wait_q; /* wait-queue for checking sensors */
struct mutex io_mutex; /* lock to prevent concurrent reads or writes */
int o_timeout; /* counter of open time out */
int r_error; /* counter of read error */
int r_lasterr; /* read last error */
int w_error; /* counter of write error */
int w_lasterr; /* write last error */
};
#define to_skel_dev(d) container_of(d, struct fjveincam, kref)
static struct usb_driver usb_fjveincam_driver;
//skel static void fjveincam_draw_down(struct usb_fjveincam *dev);
/* our private defines. if this grows any larger, use your own .h file */
#include "fjveincam.h"
#define CONFIG_FJVEINCAM_DEBUGXXX
//
// # # ##### ###### ##### ## # ####
// # # # # # # # # # #
// # # # ##### # # # # # ####
// # # # # ##### ###### # #
// # # # # # # # # # # #
// ###### # # ###### # # # # ###### ####
//
/* Endpoint direction check macros */
#define IS_EP_BULK(ep) ((ep)->bmAttributes == USB_ENDPOINT_XFER_BULK ? 1 : 0)
#define IS_EP_BULK_IN(ep) (IS_EP_BULK(ep) && ((ep)->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN)
#define IS_EP_BULK_OUT(ep) (IS_EP_BULK(ep) && ((ep)->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT)
/* Version Information */
#define DRIVER_VERSION "V31L01"
//#define DRIVER_VERSION "V34L77"
#define DRIVER_AUTHOR "Fujitsu Frontech Ltd. Modified by Carl Goodwin (Dispension Inc)"
#define DRIVER_DESC "FUJITSU PalmSecure Sensor driver for Ubuntu22"
/* minor number defines */
/* Waiting time for sensor confirming. */
/* Change this value when the time-out happens before the sensor confirming ends. */
#define SENSOR_CONFIRMED_WAIT_TIME 1
/* Read timeouts -- R_NAK_TIMEOUT * R_EXPIRE = Number of seconds */
#define R_NAK_TIMEOUT (50) /* Default number of X seconds to wait */
#define R_EXPIRE 1 /* Number of attempts to wait X seconds */
/* Write timeouts */
#define W_NAK_TIMEOUT (50) /* Default number of X seconds to wait */
/* Ioctl timeouts */
#define C_NAK_TIMEOUT (100) /* Default number of X seconds to wait */
/* Allocate buffer byte size */
#define IBUF_SIZE 32768
#define OBUF_SIZE 4096
/* Flag of sensor state of use */
#define SENSOR_NOT_CONFIRMED 0 /* Sensor is not used or is in phase of confirming. */
#define SENSOR_CONFIRMED 1 /* Sensor is now used */
static DEFINE_MUTEX(fjveincam_mutex); /* Initializes to unlocked */
//
static void dbg(int line, char * func, char * remark, unsigned long num){
pr_notice(">>>>>>>>>>>>>>.. USB Driver: %s @ %d (%s): %s = %lu", __FILE__, line, remark, func, num);
}
// ####### ### # #######
// # # # #
// # # # #
// ##### # # #####
// # # # #
// # # # #
// # ### ####### #######
//
// @func
static int usb_fjveincam_open(struct inode *inode, struct file *file)
{
struct fjveincam *dev;
struct usb_interface *interface;
int subminor;
int retval = 0;
long wait;
// does this even run?
dbg(__LINE__, "usb_fjveincam_open", "********* fjveincam open", ENODEV);
pr_notice("**************81 FFFFFFFFFUCK");
return -ENODEV;
mutex_lock(&fjveincam_mutex);
subminor = iminor(inode);
dbg(__LINE__, "usb_fjveincam_open", "open", subminor);
interface = usb_find_interface(&usb_fjveincam_driver, subminor);
if (!interface) {
pr_err("%s - error, can't find device for minor %d\n",
__func__, subminor);
retval = -ENODEV;
goto exit;
}
dev = usb_get_intfdata(interface);
if ((!dev) || (!dev->udev)) {
dbg(__LINE__, "usb_fjveincam_open", "device not present", 0L);
retval = -ENODEV;
goto exit;
}
mutex_lock(&(dev->io_mutex));
if (dev->open_count) {
/* Another process has opened. */
if (dev->confirmed == SENSOR_CONFIRMED) {
/* The sensor was confirmed. */
dbg(__LINE__, "usb_fjveincam_open", "device already open", 0L);
retval = -EBUSY;
goto exit;
}
mutex_unlock(&(dev->io_mutex));
/* Wait until the sensor is confirmed or closed, because another process is open. */
/* Change SENSOR_CONFIRMED_WAIT_TIME value when the time-out happens before the sensor is confirmed. */
wait = wait_event_interruptible_timeout(dev->wait_q,
(!dev->open_count)||(dev->confirmed==SENSOR_CONFIRMED),
SENSOR_CONFIRMED_WAIT_TIME);
mutex_lock(&(dev->io_mutex));
if (wait == 0) {
/* Time-out happens before the sensor is confirmed. */
dbg(__LINE__, "usb_fjveincam_open", "preconfirmation timeout", 0L);
dev->o_timeout++;
dev->confirmed=SENSOR_CONFIRMED;
retval = -EBUSY;
goto exit;
}
else if (dev->confirmed==SENSOR_CONFIRMED) {
/* Another process completed the sensor confirming, and started the use of the sensor. */
dbg(__LINE__, "usb_fjveincam_open", "device already open", 0L);
retval = -EBUSY;
goto exit;
}
else if(wait == -ERESTARTSYS) {
retval = -ERESTARTSYS;
goto exit;
}
/* else {
// Another process closed the sensor.
} */
}
init_waitqueue_head(&dev->wait_q);
dev->open_count = 1;
file->private_data = dev; /* Used by the read and write methods */
exit:
mutex_unlock(&(dev->io_mutex));
mutex_unlock(&fjveincam_mutex);
return retval;
}
// @func
static int usb_fjveincam_release(struct inode *inode, struct file *file)
{
struct fjveincam *dev = file->private_data;
mutex_lock(&(dev->io_mutex));
dev->confirmed = SENSOR_NOT_CONFIRMED;
dev->open_count = 0;
file->private_data = NULL;
if (!dev->udev) {
/* The device was unplugged while open - need to clean up */
dbg(__LINE__, "funczz", "device was unplugged while open .. tidying up", 0L);
mutex_unlock(&(dev->io_mutex));
kfree(dev->ibuf);
kfree(dev->obuf);
kfree(dev);
return 0;
}
wake_up_interruptible(&dev->wait_q); /* Wake_up the process waiting in open() function. */
dbg(__LINE__, "usb_fjveincam_close", "closing...", 0L);
mutex_unlock(&(dev->io_mutex));
return 0;
}
// ### # #######
// # # # #
// # # # #
// # # # #
// # # # #
// # # # #
// ### # #######
//
// @func
static ssize_t usb_fjveincam_read(struct file *file, char *buffer,
size_t count, loff_t *ppos)
{
struct fjveincam *dev = file->private_data;
struct usb_device *udev;
ssize_t bytes_read = 0; /* Overall count of bytes_read */
ssize_t ret = 0;
int subminor;
int partial; /* Number of bytes successfully read */
int this_read; /* Max number of bytes to read */
int result;
int r_expire = R_EXPIRE;
char *ibuf;
struct timespec64 CURRENT_TIME;
ktime_get_ts64(&CURRENT_TIME);
mutex_lock(&(dev->io_mutex));
subminor = dev->subminor;
udev = dev->udev;
if (!udev) {
/* The device was unplugged before the file was released */
dbg(__LINE__, "usb_fjveincam_read", "device was unplugged", 0L);
ret = -ENODEV;
goto out_error;
}
ibuf = dev->ibuf;
file->f_path.dentry->d_inode->i_atime = CURRENT_TIME;
while (count > 0) {
if (signal_pending(current)) {
dbg(__LINE__, "usb_fjveincam_read", "signal detected", 0L);
ret = -ERESTARTSYS;
break;
}
this_read = (count >= IBUF_SIZE) ? IBUF_SIZE : count;
result = usb_bulk_msg(udev, usb_rcvbulkpipe(udev, dev->bulk_in_ep), ibuf, this_read, &partial, R_NAK_TIMEOUT);
//dbg("%s: minor:%d result:%d this_read:%d partial:%d count:%d", "funczz", subminor, result, this_read, partial, count);
dbg(__LINE__, "usb_fjveincam_read", "partial read", 0L);
dev->r_lasterr = result;
if (result == -ETIMEDOUT) { /* NAK */
dev->r_error++;
if (!partial) { /* No data */
if (--r_expire <= 0) { /* Give it up */
dbg(__LINE__, "usb_fjveincam_read", "excessive NAKs", 0L);
ret = result;
break;
} else { /* Keep trying to read data */
schedule_timeout(R_NAK_TIMEOUT);
continue;
}
} else { /* Timeout w/ some data */
goto data_recvd;
}
}
if (result == -EPIPE) { /* No hope */
dev->r_error++;
if(usb_clear_halt(udev, dev->bulk_in_ep)) {
dbg(__LINE__, "usb_fjveincam_read", "failed to clear endpoint halt condition", 0L);
}
ret = result;
break;
} else if ((result < 0) && (result != EREMOTEIO)) {
dev->r_error++;
dbg(__LINE__, "usb_fjveincam_read", "an error occurred", 0L);
ret = -EIO;
break;
}
data_recvd:
if (partial) { /* Data returned */
if (copy_to_user(buffer, ibuf, partial)) {
dbg(__LINE__, "usb_fjveincam_read", "failed to copy data to user space", 0L);
ret = -EFAULT;
break;
}
count -= partial; /* Compensate for short reads */
bytes_read += partial; /* Keep tally of what actually was read */
buffer += partial;
} else {
ret = 0;
break;
}
}
out_error:
dbg(__LINE__, "usb_fjveincam_read", "bytes were read", 0L);
mutex_unlock(&(dev->io_mutex));
return ret ? ret : bytes_read;
}
// @func
static ssize_t usb_fjveincam_write(struct file *file, const char *buffer,
size_t count, loff_t *ppos)
{
struct fjveincam *dev = file->private_data;
struct usb_device *udev;
ssize_t bytes_written = 0; /* Overall count of bytes written */
ssize_t ret = 0;
int subminor;
int this_write; /* Number of bytes to write */
int partial; /* Number of bytes successfully written */
int result = 0;
char *obuf;
struct timespec64 CURRENT_TIME;
ktime_get_ts64(&CURRENT_TIME);
mutex_lock(&(dev->io_mutex));
subminor = dev->subminor;
udev = dev->udev;
if (!udev) {
dbg(__LINE__, "usb_fjveincam_write", "device was unplugged", 0L);
ret = -ENODEV;
goto out_error;
}
obuf = dev->obuf;
file->f_path.dentry->d_inode->i_atime = CURRENT_TIME;
while (count > 0) {
if (signal_pending(current)) {
ret = -ERESTARTSYS;
break;
}
this_write = (count >= OBUF_SIZE) ? OBUF_SIZE : count;
if (copy_from_user(dev->obuf, buffer, this_write)) {
ret = -EFAULT;
break;
}
result = usb_bulk_msg(udev,usb_sndbulkpipe(udev, dev->bulk_out_ep), obuf, this_write, &partial, W_NAK_TIMEOUT);
dbg(__LINE__, "usb_fjveincam_write", "bulk data sent", 0L);
dev->w_lasterr = result;
if (result == -ETIMEDOUT) { /* NAK */
dbg(__LINE__, "usb_fjveincam_write", "excess NAKs", 0L);
dev->w_error++;
ret = result;
break;
} else if (result < 0) { /* We should not get any I/O errors */
dbg(__LINE__, "usb_fjveincam_write", "error detected", 0L);
dev->w_error++;
ret = -EIO;
break;
}
if (partial != this_write) { /* Unable to write all contents of obuf */
dev->w_error++;
ret = -EIO;
break;
}
if (partial) { /* Data written */
buffer += partial;
count -= partial;
bytes_written += partial;
} else { /* No data written */
ret = 0;
break;
}
}
out_error:
mutex_unlock(&(dev->io_mutex));
return ret ? ret : bytes_written;
}
// ### ####### ##### ####### #
// # # # # # # #
// # # # # # #
// # # # # # #
// # # # # # #
// # # # # # # #
// ### ####### ##### # #######
//
// @func
static long usb_fjveincam_unlocked_ioctl(struct file *file, uint cmd, ulong arg)
{
struct fjveincam *dev = file->private_data;
struct usb_device *udev;
char obuf[256];
int subminor;
int retval = 0;
return -99;
memset(&obuf,0,sizeof(obuf));
printk(">>>>>>>>> IOCTL %d\n", cmd);
mutex_lock(&(dev->io_mutex));
subminor = dev->subminor;
dbg(__LINE__, "usb_fjveincam_ioctl", "ioctl", 0L);
if (!dev->udev) {
dbg(__LINE__, "usb_fjveincam_ioctl", "device was unplugged", 0L);
retval = -ENODEV;
goto out_error;
}
switch (cmd)
{
case USB_FJVEINCAMV30_IOCTL_CTRLMSG:
case USB_FJVEINCAM_IOCTL_CTRLMSG:
{
struct fjveincam_cmsg user_cmsg;
struct {
struct usb_ctrlrequest req;
unsigned char *data;
} cmsg;
int pipe, nb, ret;
unsigned char buf[974];
dbg(__LINE__, "usb_fjveincam_ioctl", "USB_FJVEINCAM_IOCTL_CTRLMSG", 0L);
udev = dev->udev;
dbg(__LINE__, "usb_fjveincam_ioctl", "dealing with an ioctl", 0L);
if (copy_from_user(&user_cmsg, (void *)arg, sizeof(user_cmsg))) {
retval = -EFAULT;
break;
}
cmsg.req.bRequestType = user_cmsg.req.bRequestType;
cmsg.req.bRequest = user_cmsg.req.bRequest;
cmsg.req.wValue = user_cmsg.req.wValue;
cmsg.req.wIndex = user_cmsg.req.wIndex;
cmsg.req.wLength = user_cmsg.req.wLength;
cmsg.data = user_cmsg.data;
nb = cmsg.req.wLength;
if (nb > sizeof(buf)) {
retval = -EINVAL;
break;
}
if ((cmsg.req.bRequestType & 0x80) == 0) {
pipe = usb_sndctrlpipe(udev, 0);
if (nb > 0 && copy_from_user(buf, cmsg.data, nb)) {
retval = -EFAULT;
break;
}
} else {
pipe = usb_rcvctrlpipe(udev, 0);
}
ret = usb_control_msg(udev, pipe,
cmsg.req.bRequest,
cmsg.req.bRequestType,
cmsg.req.wValue,
cmsg.req.wIndex,
buf, nb, C_NAK_TIMEOUT);
dbg(__LINE__, "usb_fjveincam_ioctl", "request", 0L);
sprintf(obuf,"%s: minor:%d request result:%d cmd[%02X:%04X:%04X:%04X] rsp[%02X:%02X:%02X:%02X]",
"funczz", subminor, ret,
cmsg.req.bRequest, cmsg.req.wValue, cmsg.req.wIndex, cmsg.req.wLength,
buf[0], buf[1], buf[2], buf[3]);
dbg(__LINE__, "usb_fjveincam_ioctl", obuf, 0L);
if (ret < 0) {
dbg(__LINE__, "usb_fjveincam_ioctl", "error detected", 0L);
retval = -EIO;
break;
}
if (nb < ret) {
ret = nb;
}
if (nb > 0 && (cmsg.req.bRequestType & 0x80) && copy_to_user(cmsg.data, buf, ret)) {
retval = -EFAULT;
}
break;
}
case USB_FJVEINCAMV30_IOCTL_CHECK:
case USB_FJVEINCAM_IOCTL_CHECK:
dbg(__LINE__, "usb_fjveincam_ioctl", "USB_FJVEINCAM_IOCTL_CHECK", 0L);
break;
/* Notification of the end of sensor confirming. */
case USB_FJVEINCAMV30_IOCTL_CONFIRM:
case USB_FJVEINCAM_IOCTL_CONFIRM:
{
dbg(__LINE__, "usb_fjveincam_ioctl", "USB_FJVEINCAM_IOCTL_CONFIRM", 0L);
dev->confirmed = SENSOR_CONFIRMED; /* Sensor confirming was completed, and started the use of the sensor. */
wake_up_interruptible(&dev->wait_q); /* Wake_up the process waiting in open() function. */
dbg(__LINE__, "usb_fjveincam_ioctl", "sensor was checked", 0L);
break;
}
case USB_FJVEINCAMV30_IOCTL_INFO:
case USB_FJVEINCAM_IOCTL_INFO:
{
struct fjveincam_info info;
dbg(__LINE__, "usb_fjveincam_ioctl", "USB_FJVEINCAM_IOCTL_INFO", 0L);
info.magic = FJPV_MAGIC; /* Magic number for indicating Fujitsu Palmsecure sensor driver. */
info.minor = subminor;
info.o_timeout = dev->o_timeout;
info.r_error = dev->r_error;
info.r_lasterr = dev->r_lasterr;
info.w_error = dev->w_error;
info.w_lasterr = dev->w_lasterr;
strncpy((char*)info.version, DRIVER_VERSION, sizeof(info.version));
if (copy_to_user((void *)arg, &info, sizeof(info)))
retval = -EFAULT;
break;
}
default:
dbg(__LINE__, "usb_fjveincam_ioctl", "invalid request code", 0L);
retval = -ENOIOCTLCMD;
break;
}
out_error:
mutex_unlock(&(dev->io_mutex));
dbg(__LINE__, "usb_fjveincam_ioctl", "OK...", 0L);
return retval;
}
// @config
static struct file_operations usb_fjveincam_fops = {
.owner = THIS_MODULE,
.open = usb_fjveincam_open,
.release = usb_fjveincam_release,
.read = usb_fjveincam_read,
.write = usb_fjveincam_write,
.unlocked_ioctl = usb_fjveincam_unlocked_ioctl,
};
// @config
static struct usb_class_driver fjveincam_class = {
.name = "usb/fjveincam%d",
.fops = &usb_fjveincam_fops,
.minor_base = USB_subminor_BASE,
};
//
// ##### ##### #### ##### ######
// # # # # # # # # #
// # # # # # # ##### #####
// ##### ##### # # # # #
// # # # # # # # #
// # # # #### ##### ######
//
// Runs when the *device* is plugged in
// @func
static int usb_fjveincam_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *udev = interface_to_usbdev(intf);
struct fjveincam *dev;
struct usb_host_interface *interface;
struct usb_endpoint_descriptor *endpoint;
int ep_cnt;
int retval;
char have_bulk_in, have_bulk_out;
char name[20];
char buf[128];
// Dump usb_interface structure
pr_info("Dumping usb_interface structure:\n");
pr_info(" Interface number: %d\n", intf->cur_altsetting->desc.bInterfaceNumber);
pr_info(" Interface class: 0x%02x\n", intf->cur_altsetting->desc.bInterfaceClass);
// Add more fields as needed
// Dump usb_device_id structure
pr_info("Dumping usb_device_id structure:\n");
pr_info(" Matched vendor ID: 0x%04x\n", id->idVendor);
pr_info(" Matched product ID: 0x%04x\n", id->idProduct);
// Add more fields as needed
memset(&buf,0,sizeof(buf));
dbg(__LINE__, "usb_fjveincam_probe", "probed; [device id]", 0L);
sprintf(buf, "vendor id 0x%x, device id 0x%x, portnum:%d minor_base:%d",
udev->descriptor.idVendor, udev->descriptor.idProduct,
udev->portnum, USB_subminor_BASE);
dbg(__LINE__, "usb_fjveincam_probe", buf, 0L);
/*
* After this point we can be a little noisy about what we are trying to
* configure.
*/
if (udev->descriptor.bNumConfigurations != 1) {
dbg(__LINE__, "funczz", "only one device configuration is supported", 0L);
return -ENODEV;
}
/*
* Start checking for two bulk endpoints.
*/
interface = &intf->altsetting[0];
dbg(__LINE__, "usb_fjveincam_probe", "endpoints", interface->desc.bNumEndpoints);
if (interface->desc.bNumEndpoints != 2) {
dbg(__LINE__, "usb_fjveincam_probe", "**ERROR** endpoint count", interface->desc.bNumEndpoints);
return -EIO;
}
ep_cnt = have_bulk_in = have_bulk_out = 0;
while (ep_cnt < interface->desc.bNumEndpoints) {
endpoint = &interface->endpoint[ep_cnt].desc;
if (!have_bulk_in && IS_EP_BULK_IN(endpoint)) {
ep_cnt++;
have_bulk_in = endpoint->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
dbg(__LINE__, "usb_fjveincam_probe", "bulk in", 0L);
continue;
}
if (!have_bulk_out && IS_EP_BULK_OUT(endpoint)) {
ep_cnt++;
have_bulk_out = endpoint->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
dbg(__LINE__, "usb_fjveincam_probe", "bulk out", 0L);
continue;
}
dbg(__LINE__, "usb_fjveincam_probe", "**ERROR** not a bulk endpoint", 0L);
return -EIO; /* Shouldn't ever get here unless we have something weird */
}
/*
* Perform a quick check to make sure that everything worked as it
* should have.
*/
if (!have_bulk_in || !have_bulk_out) {
dbg(__LINE__, "usb_fjveincam_probe", "**ERROR** bulk in/out both required", 0L);
return -EIO;
}
/*
* Determine a minor number and initialize the structure associated
* with it.
*/
if (!(dev = kzalloc (sizeof (struct fjveincam), GFP_KERNEL))) {
dbg(__LINE__, "usb_fjveincam_probe", "**ERROR** insufficient memory", 0L);
return -ENOMEM;
}
mutex_init(&(dev->io_mutex)); /* Initializes to unlocked */
/* Ok, now initialize all the relevant values */
if (!(dev->obuf = (char *)kmalloc(OBUF_SIZE, GFP_KERNEL))) {
dbg(__LINE__, "usb_fjveincam_probe", "**ERROR** insufficient output memory", 0L);
kfree(dev);
return -ENOMEM;
}
if (!(dev->ibuf = (char *)kmalloc(IBUF_SIZE, GFP_KERNEL))) {
dbg(__LINE__, "usb_fjveincam_probe", "**ERROR** insufficient input memory", 0L);
kfree(dev->obuf);
kfree(dev);
return -ENOMEM;
}
usb_get_dev(udev);
dev->bulk_in_ep = have_bulk_in;
dev->bulk_out_ep = have_bulk_out;
dev->udev = udev;
dev->open_count = 0;
dev->confirmed = SENSOR_NOT_CONFIRMED;
usb_set_intfdata(intf, dev);
retval = usb_register_dev(intf, &fjveincam_class);
if (retval) {
dbg(__LINE__, "usb_fjveincam_probe", "**ERROR** unable to get a minor number", 0L);
usb_set_intfdata(intf, NULL);
kfree(dev->ibuf);
kfree(dev->obuf);
kfree(dev);
return -ENOMEM;
}
dbg(__LINE__, "usb_fjveincam_probe", "have a minor", intf->minor);
dev->subminor = intf->minor;
snprintf(name, sizeof(name), fjveincam_class.name,
intf->minor - fjveincam_class.minor_base);
dev_info(&intf->dev, "USB PalmVeinCam device now attached to %s\n", name);
dbg(__LINE__, "usb_fjveincam_probe: have a name", name, 0L);
return 0;
}
// ##### ####### # # # #
// # # # # ## # ## #
// # # # # # # # # #
// # # # # # # # # #
// # # # # # # # # #
// # # # # # ## # ##
// ##### ####### # # # #
//
// Runs when the *device* is disconnected, or the module is unloaded
// @func
static void usb_fjveincam_disconnect(struct usb_interface *interface)
{
struct fjveincam *dev = usb_get_intfdata(interface);
int subminor = interface->minor;
usb_set_intfdata(interface, NULL);
/* give back our minor */
usb_deregister_dev (interface, &fjveincam_class);
mutex_lock(&fjveincam_mutex); /* If there is a process in open(), wait for return. */
mutex_lock(&(dev->io_mutex));
dev_info(&interface->dev, "USB PalmVeinCam #%d now disconnected\n", (subminor - fjveincam_class.minor_base));
usb_driver_release_interface(&usb_fjveincam_driver,
dev->udev->actconfig->interface[0]);
if (dev->open_count) {
/* The device is still open - cleanup must be delayed */
dbg(__LINE__, "usb_fjveincam_disconnect", "device was unplugged while open", 0L);
dev->udev = 0;
mutex_unlock(&(dev->io_mutex));
mutex_unlock(&fjveincam_mutex);
return;
}
dbg(__LINE__, "usb_fjveincam_disconnect", "deallocating...", 0L);
mutex_unlock(&(dev->io_mutex));
mutex_unlock(&fjveincam_mutex);
kfree(dev->ibuf);
kfree(dev->obuf);
kfree(dev);
}
// ###### ####### ##### ### ##### ####### ### ###### # #
// # # # # # # # # # ### # # ## #
// # # # # # # # # # # # # #
// ###### ##### # #### # ##### # # ###### # # #
// # # # # # # # # # # # # #
// # # # # # # # # # # # # ##
// # # ####### ##### ### ##### # # # # #
//
// Runs when the *module* is loaded
// @func
static int __init usb_fjveincam_init(void){
int result;
// register this driver with the USB subsystem - fires on driver module insmod
dbg(__LINE__, "usb_fjveincam_init", "USB registration with ioctl %lu", USB_FJVEINCAM_IOCTL_INFO);
result = usb_register(&usb_fjveincam_driver);
if (result){
dbg(__LINE__, "usb_fjveincam_init", "USB registration failed", 0L);
}
dbg(__LINE__, "usb_fjveincam_init", "registration complete", result);
return result;
}
// This runs when the *module* is unloaded
// @func
static void __exit usb_fjveincam_exit(void)
{
// deregister this driver with the USB subsystem - fires on driver module rmmod
dbg(__LINE__, "usb_fjveincam_exit", "USB de-registration with ioctl %lu", USB_FJVEINCAM_IOCTL_INFO);
usb_deregister(&usb_fjveincam_driver);
dbg(__LINE__, "usb_fjveincam_exit", "removing the driver", 0L);
}
module_init(usb_fjveincam_init);
module_exit(usb_fjveincam_exit);
// @config
static struct usb_driver usb_fjveincam_driver = {
.name = "fjveincam",
.probe = usb_fjveincam_probe,
.disconnect = usb_fjveincam_disconnect,
.id_table = fjveincam_table,
.no_dynamic_id = 1
};
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL v2");

View File

@ -31,14 +31,13 @@ __used __section("__versions") = {
{ 0xdf85ea06, "usb_deregister" }, { 0xdf85ea06, "usb_deregister" },
{ 0xf63cc4cc, "usb_register_driver" }, { 0xf63cc4cc, "usb_register_driver" },
{ 0xa024a396, "usb_clear_halt" }, { 0xa024a396, "usb_clear_halt" },
{ 0x6b10bee1, "_copy_to_user" },
{ 0xd4afa9de, "usb_control_msg" },
{ 0x228fca22, "usb_bulk_msg" }, { 0x228fca22, "usb_bulk_msg" },
{ 0x13c49cc2, "_copy_from_user" },
{ 0x88db9f48, "__check_object_size" },
{ 0xa7bfbf2f, "current_task" }, { 0xa7bfbf2f, "current_task" },
{ 0x5e515be6, "ktime_get_ts64" }, { 0x5e515be6, "ktime_get_ts64" },
{ 0x6b10bee1, "_copy_to_user" },
{ 0x56470118, "__warn_printk" },
{ 0xd4afa9de, "usb_control_msg" },
{ 0x88db9f48, "__check_object_size" },
{ 0x13c49cc2, "_copy_from_user" },
{ 0x656e4a6e, "snprintf" }, { 0x656e4a6e, "snprintf" },
{ 0x40a9a344, "usb_register_dev" }, { 0x40a9a344, "usb_register_dev" },
{ 0x1e3192f4, "usb_get_dev" }, { 0x1e3192f4, "usb_get_dev" },
@ -46,7 +45,6 @@ __used __section("__versions") = {
{ 0xcefb0c9f, "__mutex_init" }, { 0xcefb0c9f, "__mutex_init" },
{ 0xf35141b2, "kmem_cache_alloc_trace" }, { 0xf35141b2, "kmem_cache_alloc_trace" },
{ 0x26087692, "kmalloc_caches" }, { 0x26087692, "kmalloc_caches" },
{ 0x3c3ff9fd, "sprintf" },
{ 0xd0da656b, "__stack_chk_fail" }, { 0xd0da656b, "__stack_chk_fail" },
{ 0x92540fbf, "finish_wait" }, { 0x92540fbf, "finish_wait" },
{ 0x8ddd8aad, "schedule_timeout" }, { 0x8ddd8aad, "schedule_timeout" },
@ -56,13 +54,13 @@ __used __section("__versions") = {
{ 0xd9a5ea54, "__init_waitqueue_head" }, { 0xd9a5ea54, "__init_waitqueue_head" },
{ 0x2546aa39, "usb_find_interface" }, { 0x2546aa39, "usb_find_interface" },
{ 0x3eeb2322, "__wake_up" }, { 0x3eeb2322, "__wake_up" },
{ 0x5b8239ca, "__x86_return_thunk" },
{ 0x37a0cba, "kfree" }, { 0x37a0cba, "kfree" },
{ 0x3213f038, "mutex_unlock" }, { 0x3213f038, "mutex_unlock" },
{ 0x30350852, "usb_driver_release_interface" }, { 0x30350852, "usb_driver_release_interface" },
{ 0xe6e002cf, "_dev_info" }, { 0xe6e002cf, "_dev_info" },
{ 0x4dfa8d4b, "mutex_lock" }, { 0x4dfa8d4b, "mutex_lock" },
{ 0x665cdc8a, "usb_deregister_dev" }, { 0x665cdc8a, "usb_deregister_dev" },
{ 0x5b8239ca, "__x86_return_thunk" },
{ 0x92997ed8, "_printk" }, { 0x92997ed8, "_printk" },
{ 0xbdfb6dbb, "__fentry__" }, { 0xbdfb6dbb, "__fentry__" },
}; };
@ -73,4 +71,4 @@ MODULE_ALIAS("usb:v04C5p1084d*dc*dsc*dp*ic*isc*ip*in*");
MODULE_ALIAS("usb:v04C5p125Ad*dc*dsc*dp*ic*isc*ip*in*"); MODULE_ALIAS("usb:v04C5p125Ad*dc*dsc*dp*ic*isc*ip*in*");
MODULE_ALIAS("usb:v04C5p1526d*dc*dsc*dp*ic*isc*ip*in*"); MODULE_ALIAS("usb:v04C5p1526d*dc*dsc*dp*ic*isc*ip*in*");
MODULE_INFO(srcversion, "808114ED83ED71E3194151A"); MODULE_INFO(srcversion, "58936B95B19315871CE1C0D");

View File

@ -74,7 +74,8 @@ virgil
version: 21.101.1 version: 21.101.1
serial: Unknown serial: Unknown
slot: AM4 slot: AM4
size: 3693MHz size: 3492MHz
capacity: 3500MHz
width: 64 bits width: 64 bits
clock: 100MHz clock: 100MHz
capabilities: lm fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp x86-64 constant_tsc rep_good acc_power nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs xop skinit wdt lwp fma4 tce nodeid_msr tbm topoext perfctr_core perfctr_nb bpext ptsc mwaitx cpb hw_pstate ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 xsaveopt arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov cpufreq capabilities: lm fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp x86-64 constant_tsc rep_good acc_power nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs xop skinit wdt lwp fma4 tce nodeid_msr tbm topoext perfctr_core perfctr_nb bpext ptsc mwaitx cpb hw_pstate ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 xsaveopt arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov cpufreq
@ -177,6 +178,15 @@ virgil
capabilities: usb-2.00 bidirectional capabilities: usb-2.00 bidirectional
configuration: driver=usblp maxpower=2mA speed=480Mbit/s configuration: driver=usblp maxpower=2mA speed=480Mbit/s
*-usb:1 *-usb:1
description: Generic USB device
product: FUJITSU PalmSecure-F Pro
vendor: FUJITSU
physical id: 2
bus info: usb@4:2
version: 2.00
capabilities: usb-2.00
configuration: driver=fjveincam maxpower=480mA speed=480Mbit/s
*-usb:2
description: USB hub description: USB hub
product: USB 2.0 Hub product: USB 2.0 Hub
vendor: Terminus Technology Inc. vendor: Terminus Technology Inc.
@ -185,16 +195,7 @@ virgil
version: 1.11 version: 1.11
capabilities: usb-2.00 capabilities: usb-2.00
configuration: driver=hub maxpower=100mA slots=4 speed=480Mbit/s configuration: driver=hub maxpower=100mA slots=4 speed=480Mbit/s
*-usb:0 *-usb
description: Generic USB device
product: FUJITSU PalmSecure-F Pro
vendor: FUJITSU
physical id: 1
bus info: usb@4:6.1
version: 2.00
capabilities: usb-2.00
configuration: driver=fjveincam maxpower=480mA speed=480Mbit/s
*-usb:1
description: Mouse description: Mouse
product: USB Receiver product: USB Receiver
vendor: Logitech vendor: Logitech
@ -210,7 +211,7 @@ virgil
logical name: /dev/input/event7 logical name: /dev/input/event7
logical name: /dev/input/mouse1 logical name: /dev/input/mouse1
capabilities: usb capabilities: usb
*-usb:2 *-usb:3
description: Bluetooth wireless interface description: Bluetooth wireless interface
product: Bluetooth Radio product: Bluetooth Radio
vendor: Realtek vendor: Realtek

View File

@ -0,0 +1,46 @@
execve("./drivertest", ["./drivertest", "2"], 0x7fff1b858518 /* 18 vars */) = 0
brk(NULL) = 0x564c7cc47000
arch_prctl(0x3001 /* ARCH_??? */, 0x7ffdb60bebb0) = -1 EINVAL (Invalid argument)
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f5d63ff9000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
newfstatat(3, "", {st_mode=S_IFREG|0644, st_size=106883, ...}, AT_EMPTY_PATH) = 0
mmap(NULL, 106883, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f5d63f9c000
close(3) = 0
openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0P\237\2\0\0\0\0\0"..., 832) = 832
pread64(3, "\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0"..., 784, 64) = 784
pread64(3, "\4\0\0\0 \0\0\0\5\0\0\0GNU\0\2\0\0\300\4\0\0\0\3\0\0\0\0\0\0\0"..., 48, 848) = 48
pread64(3, "\4\0\0\0\24\0\0\0\3\0\0\0GNU\0i8\235HZ\227\223\333\350s\360\352,\223\340."..., 68, 896) = 68
newfstatat(3, "", {st_mode=S_IFREG|0644, st_size=2216304, ...}, AT_EMPTY_PATH) = 0
pread64(3, "\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0"..., 784, 64) = 784
mmap(NULL, 2260560, PROT_READ, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f5d63d74000
mmap(0x7f5d63d9c000, 1658880, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x28000) = 0x7f5d63d9c000
mmap(0x7f5d63f31000, 360448, PROT_READ, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1bd000) = 0x7f5d63f31000
mmap(0x7f5d63f89000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x214000) = 0x7f5d63f89000
mmap(0x7f5d63f8f000, 52816, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7f5d63f8f000
close(3) = 0
mmap(NULL, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f5d63fb9000
arch_prctl(ARCH_SET_FS, 0x7f5d63fb9740) = 0
set_tid_address(0x7f5d63fb9a10) = 6850
set_robust_list(0x7f5d63fb9a20, 24) = 0
rseq(0x7f5d63fba0e0, 0x20, 0, 0x53053053) = 0
mprotect(0x7f5d63f89000, 16384, PROT_READ) = 0
mprotect(0x564c7be7b000, 4096, PROT_READ) = 0
mprotect(0x7f5d63ff4000, 8192, PROT_READ) = 0
prlimit64(0, RLIMIT_STACK, NULL, {rlim_cur=8192*1024, rlim_max=RLIM64_INFINITY}) = 0
munmap(0x7f5d63f9c000, 106883) = 0
newfstatat(1, "", {st_mode=S_IFCHR|0620, st_rdev=makedev(0x88, 0x4), ...}, AT_EMPTY_PATH) = 0
getrandom("\xf8\x81\x10\x55\xbd\x94\x86\xa0", 8, GRND_NONBLOCK) = 8
brk(NULL) = 0x564c7cc47000
brk(0x564c7cc68000) = 0x564c7cc68000
write(1, "#1 /dev/usb/fjveincam2\n", 23) = 23
openat(AT_FDCWD, "/dev/usb/fjveincam2", O_RDWR) = -1 ENOENT (No such file or directory)
dup(2) = 3
fcntl(3, F_GETFL) = 0x2 (flags O_RDWR)
newfstatat(3, "", {st_mode=S_IFCHR|0620, st_rdev=makedev(0x88, 0x4), ...}, AT_EMPTY_PATH) = 0
write(3, "open: No such file or directory\n", 32) = 32
close(3) = 0
write(1, "Failed to open USB device /dev/u"..., 50) = 50
exit_group(-1) = ?
+++ exited with 255 +++

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 301 KiB