initial commit
This commit is contained in:
commit
70184805cb
34
doc/README
Normal file
34
doc/README
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
|
||||||
|
YOLOSERV
|
||||||
|
========
|
||||||
|
|
||||||
|
Dispension uses several complex Python project for facial recognition.
|
||||||
|
Although very powerful, these packages do take sweet time to initialise:
|
||||||
|
typically several sec EACH on a workstation and way more on a PI4.
|
||||||
|
|
||||||
|
These startup times and sheer package weights don't play well with UKDI.
|
||||||
|
Not because they don't work, but because they detract so heavily from
|
||||||
|
UKDI's core mission - which is to interface to hardware devices.
|
||||||
|
|
||||||
|
To get around it, we are obliged to run face recognition separately, whereby
|
||||||
|
all the initialisation is is done only once - at startup. Then we
|
||||||
|
simply call the services and everything is snappy.
|
||||||
|
|
||||||
|
As far as the UKDI architecture is concerned then, core will call
|
||||||
|
out to yoloserv the same way as it currently does to UKDI.
|
||||||
|
|
||||||
|
Keeping all the face recognition stuff in one project is also
|
||||||
|
pretty useful for encapsulating the files, models and required
|
||||||
|
disciplines in one place so complex machine learning stuff doesnt
|
||||||
|
get commingled with bread and butter kiosk tasks.
|
||||||
|
|
||||||
|
Yoloserv doesnt only implement yolo as the name implies. it also implements:
|
||||||
|
* OpenCV
|
||||||
|
* SciPy / NumPy / Keras / TensorFlow / Pillow etc
|
||||||
|
* ParaVision
|
||||||
|
* Realsense
|
||||||
|
* Facematch
|
||||||
|
|
||||||
|
Pre-requisites:
|
||||||
|
imgutes
|
||||||
|
|
||||||
BIN
doc/test.jpg
Normal file
BIN
doc/test.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 16 KiB |
BIN
out/shrunk.jpg
Normal file
BIN
out/shrunk.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 2.8 KiB |
1
out/shrunk.raw
Normal file
1
out/shrunk.raw
Normal file
File diff suppressed because one or more lines are too long
BIN
out/yolo.jpg
Normal file
BIN
out/yolo.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 19 KiB |
79
sbin/ctl.sh
Executable file
79
sbin/ctl.sh
Executable file
@ -0,0 +1,79 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
#
|
||||||
|
# DISPENSION CONFIDENTIAL
|
||||||
|
#
|
||||||
|
# [2020] - [2021] Dispension Industries Limited.
|
||||||
|
# Portions Copyright © 2014-2020 Atlantean Technical Solutions Limited
|
||||||
|
# with full licensing rights granted to Dispension & Successors.
|
||||||
|
#
|
||||||
|
# All Rights Reserved.
|
||||||
|
#
|
||||||
|
# NOTICE: All information contained herein is, and remains
|
||||||
|
# the property of Dispension Industries Limited.
|
||||||
|
# The intellectual and technical concepts contained
|
||||||
|
# herein are proprietary to Dispension Industries Limited
|
||||||
|
# and its suppliers and may be covered by U.S. and Foreign Patents,
|
||||||
|
# patents in process, and are protected by trade secret or copyright law.
|
||||||
|
# Dissemination of this information or reproduction of this material
|
||||||
|
# is strictly forbidden unless prior written permission is obtained
|
||||||
|
# from Dispension Industries Limited.
|
||||||
|
#
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
HERE=$PWD
|
||||||
|
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )"
|
||||||
|
cd $DIR/..
|
||||||
|
|
||||||
|
PORT=8099
|
||||||
|
IMGDIR="/tmp/yoloserv_in"
|
||||||
|
OUTDIR="/tmp/yoloserv_out"
|
||||||
|
ZZZ=5
|
||||||
|
|
||||||
|
|
||||||
|
export PYTHONPATH="$PYTHONPATH:./yolov5-face_Jan1"
|
||||||
|
export WEIGHTS="./yolov5-face_Jan1/runs/train/exp/weights/yolov5m6_face.pt"
|
||||||
|
|
||||||
|
|
||||||
|
function f_test(){
|
||||||
|
|
||||||
|
wget http://localhost:$PORT/process/
|
||||||
|
}
|
||||||
|
|
||||||
|
function f_start(){
|
||||||
|
mkdir -p $IMGDIR
|
||||||
|
mkdir -p $OUTDIR
|
||||||
|
echo $$ > var/yoloserv.pid
|
||||||
|
while [ -e var/yoloserv.pid ]
|
||||||
|
do
|
||||||
|
python3 src/yoloserv.py $PORT $IMGDIR $OUTDIR $WEIGHTS
|
||||||
|
sleep $ZZZ
|
||||||
|
done
|
||||||
|
}
|
||||||
|
|
||||||
|
function f_stop(){
|
||||||
|
rm var/yoloserv.pid
|
||||||
|
wget http://localhost:$PORT/svc_stop
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
echo "Running $0 with option $1 at $DIR"
|
||||||
|
case $1 in
|
||||||
|
|
||||||
|
"start") f_start
|
||||||
|
;;
|
||||||
|
"restart") f_stop
|
||||||
|
f_start
|
||||||
|
;;
|
||||||
|
"reload") f_reload
|
||||||
|
;;
|
||||||
|
"stop") f_stop
|
||||||
|
;;
|
||||||
|
*) echo "Error. $1 is not a $0 command."
|
||||||
|
;;
|
||||||
|
esac
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
cd $HERE
|
||||||
198
src/detect_face.py
Normal file
198
src/detect_face.py
Normal file
@ -0,0 +1,198 @@
|
|||||||
|
# -*- coding: UTF-8 -*-
|
||||||
|
import argparse
|
||||||
|
import time
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import torch
|
||||||
|
import torch.backends.cudnn as cudnn
|
||||||
|
from numpy import random
|
||||||
|
import copy
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
from models.experimental import attempt_load
|
||||||
|
from utils.datasets import letterbox
|
||||||
|
from utils.general import check_img_size, non_max_suppression_face, scale_coords, xyxy2xywh
|
||||||
|
from utils.torch_utils import time_synchronized
|
||||||
|
|
||||||
|
|
||||||
|
def load_model(weights, device):
|
||||||
|
model = attempt_load(weights, map_location=device) # load FP32 model
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None):
|
||||||
|
# Rescale coords (xyxy) from img1_shape to img0_shape
|
||||||
|
if ratio_pad is None: # calculate from img0_shape
|
||||||
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
||||||
|
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
||||||
|
else:
|
||||||
|
gain = ratio_pad[0][0]
|
||||||
|
pad = ratio_pad[1]
|
||||||
|
|
||||||
|
coords[:, [0, 2, 4, 6, 8]] -= pad[0] # x padding
|
||||||
|
coords[:, [1, 3, 5, 7, 9]] -= pad[1] # y padding
|
||||||
|
coords[:, :10] /= gain
|
||||||
|
#clip_coords(coords, img0_shape)
|
||||||
|
coords[:, 0].clamp_(0, img0_shape[1]) # x1
|
||||||
|
coords[:, 1].clamp_(0, img0_shape[0]) # y1
|
||||||
|
coords[:, 2].clamp_(0, img0_shape[1]) # x2
|
||||||
|
coords[:, 3].clamp_(0, img0_shape[0]) # y2
|
||||||
|
coords[:, 4].clamp_(0, img0_shape[1]) # x3
|
||||||
|
coords[:, 5].clamp_(0, img0_shape[0]) # y3
|
||||||
|
coords[:, 6].clamp_(0, img0_shape[1]) # x4
|
||||||
|
coords[:, 7].clamp_(0, img0_shape[0]) # y4
|
||||||
|
coords[:, 8].clamp_(0, img0_shape[1]) # x5
|
||||||
|
coords[:, 9].clamp_(0, img0_shape[0]) # y5
|
||||||
|
return coords
|
||||||
|
|
||||||
|
|
||||||
|
# Render green square and landmark dots on the original image, and return the image
|
||||||
|
def show_results(img, xywh, conf, landmarks, class_num, landmarks_eyebrows):
|
||||||
|
h,w,c = img.shape
|
||||||
|
tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness
|
||||||
|
x1 = int(xywh[0] * w - 0.5 * xywh[2] * w)
|
||||||
|
y1 = int(xywh[1] * h - 0.5 * xywh[3] * h)
|
||||||
|
x2 = int(xywh[0] * w + 0.5 * xywh[2] * w)
|
||||||
|
y2 = int(xywh[1] * h + 0.5 * xywh[3] * h)
|
||||||
|
cv2.rectangle(img, (x1,y1), (x2, y2), (0,255,0), thickness=tl, lineType=cv2.LINE_AA)
|
||||||
|
|
||||||
|
clors = [(255,0,0),(0,255,0),(0,0,255),(255,255,0),(0,255,255)]
|
||||||
|
|
||||||
|
clors2 = [(155,10,10),(10,155,10)]
|
||||||
|
|
||||||
|
for i in range(5):
|
||||||
|
point_x = int(landmarks[2 * i] * w)
|
||||||
|
point_y = int(landmarks[2 * i + 1] * h)
|
||||||
|
cv2.circle(img, (point_x, point_y), tl+1, clors[i], -1)
|
||||||
|
|
||||||
|
for i in range(2):
|
||||||
|
point_x = int(landmarks_eyebrows[2 * i] * w)
|
||||||
|
point_y = int(landmarks_eyebrows[2 * i + 1] * h)
|
||||||
|
cv2.circle(img, (point_x, point_y), tl+1, clors2[i], -1)
|
||||||
|
|
||||||
|
tf = max(tl - 1, 1) # font thickness
|
||||||
|
label = str(conf)[:5]
|
||||||
|
cv2.putText(img, label, (x1, y1 - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
||||||
|
return img, [x1,y1,x2,y2]
|
||||||
|
|
||||||
|
|
||||||
|
# DO some maths to figure out eyebrow positions relative to the eyes
|
||||||
|
def calc_eyebrows(landmarks):
|
||||||
|
landmarks_eyes = numpy.array(landmarks[0:4], dtype=numpy.float32)
|
||||||
|
|
||||||
|
difx_eye = landmarks_eyes[2] - landmarks_eyes[0]
|
||||||
|
ebx1 = landmarks_eyes[0] + (difx_eye/4)
|
||||||
|
ebx2 = landmarks_eyes[2] - (difx_eye/4)
|
||||||
|
|
||||||
|
dify_eye = 25*difx_eye/63
|
||||||
|
eby1 = landmarks_eyes[1] - dify_eye
|
||||||
|
eby2 = landmarks_eyes[3] - dify_eye
|
||||||
|
|
||||||
|
landmarks_eyebrows = numpy.array([ebx1, eby1, ebx2, eby2])
|
||||||
|
landmarks_eyebrows = landmarks_eyebrows.tolist()
|
||||||
|
#print('landmarks:', landmarks)
|
||||||
|
#print('eyes:', landmarks_eyes)
|
||||||
|
#print('eyebrows:', landmarks_eyebrows)
|
||||||
|
return landmarks_eyebrows
|
||||||
|
|
||||||
|
|
||||||
|
# detect the most significant face in the scene
|
||||||
|
def detect_one(model, image_path, device, filename):
|
||||||
|
# Load model
|
||||||
|
img_size = 800
|
||||||
|
conf_thres = 0.3
|
||||||
|
iou_thres = 0.5
|
||||||
|
|
||||||
|
orgimg = cv2.imread(image_path) # BGR
|
||||||
|
img0 = copy.deepcopy(orgimg)
|
||||||
|
out_img = copy.deepcopy(orgimg)
|
||||||
|
|
||||||
|
assert orgimg is not None, 'Image Not Found ' + image_path
|
||||||
|
h0, w0 = orgimg.shape[:2] # orig hw
|
||||||
|
r = img_size / max(h0, w0) # resize image to img_size
|
||||||
|
if r != 1: # always resize down, only resize up if training with augmentation
|
||||||
|
interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR
|
||||||
|
img0 = cv2.resize(img0, (int(w0 * r), int(h0 * r)), interpolation=interp)
|
||||||
|
|
||||||
|
imgsz = check_img_size(img_size, s=model.stride.max()) # check img_size
|
||||||
|
|
||||||
|
img = letterbox(img0, new_shape=imgsz)[0]
|
||||||
|
# Convert
|
||||||
|
img = img[:, :, ::-1].transpose(2, 0, 1).copy() # BGR to RGB, to 3x416x416
|
||||||
|
|
||||||
|
# Run inference
|
||||||
|
t0 = time.time()
|
||||||
|
|
||||||
|
img = torch.from_numpy(img).to(device)
|
||||||
|
img = img.float() # uint8 to fp16/32
|
||||||
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||||||
|
if img.ndimension() == 3:
|
||||||
|
img = img.unsqueeze(0)
|
||||||
|
|
||||||
|
# Inference
|
||||||
|
t1 = time_synchronized()
|
||||||
|
pred = model(img)[0]
|
||||||
|
|
||||||
|
# Apply NMS
|
||||||
|
pred = non_max_suppression_face(pred, conf_thres, iou_thres)
|
||||||
|
|
||||||
|
print('img.shape: ', img.shape)
|
||||||
|
print('orgimg.shape: ', orgimg.shape)
|
||||||
|
|
||||||
|
landmarks = []
|
||||||
|
landmarks_eyebrows = []
|
||||||
|
xyxy = []
|
||||||
|
# Process detections
|
||||||
|
for i, det in enumerate(pred): # detections per image
|
||||||
|
gn = torch.tensor(orgimg.shape)[[1, 0, 1, 0]].to(device) # normalization gain whwh
|
||||||
|
gn_lks = torch.tensor(orgimg.shape)[[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]].to(device) # normalization gain landmarks
|
||||||
|
if len(det):
|
||||||
|
# Rescale boxes from img_size to im0 size
|
||||||
|
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], orgimg.shape).round()
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
for c in det[:, -1].unique():
|
||||||
|
n = (det[:, -1] == c).sum() # detections per class
|
||||||
|
|
||||||
|
det[:, 5:15] = scale_coords_landmarks(img.shape[2:], det[:, 5:15], orgimg.shape).round()
|
||||||
|
|
||||||
|
for j in range(det.size()[0]):
|
||||||
|
xywh = (xyxy2xywh(det[j, :4].view(1, 4)) / gn).view(-1).tolist()
|
||||||
|
conf = det[j, 4].cpu().numpy()
|
||||||
|
landmarks = (det[j, 5:15].view(1, 10) / gn_lks).view(-1).tolist()
|
||||||
|
class_num = det[j, 15].cpu().numpy()
|
||||||
|
#orgimg = show_results(orgimg, xywh, conf, landmarks, class_num)
|
||||||
|
|
||||||
|
#estimate eyebrow locations
|
||||||
|
landmarks_eyebrows = calc_eyebrows(landmarks)
|
||||||
|
newimg, xyxy = show_results(orgimg, xywh, conf, landmarks, class_num, landmarks_eyebrows)
|
||||||
|
|
||||||
|
landmarks_all = landmarks + landmarks_eyebrows + xyxy
|
||||||
|
shrunk = out_img[ xyxy[1]:xyxy[3], xyxy[0]:xyxy[2], 0:3 ]
|
||||||
|
cv2.imwrite(filename, newimg)
|
||||||
|
cv2.imwrite("/tmp/shrunk.jpg",shrunk)
|
||||||
|
shrunk.tofile("/tmp/shrunk.raw")
|
||||||
|
return landmarks_all
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
#READ A SINGLE IMAGE
|
||||||
|
where_read = "/tmp/test.jpg"
|
||||||
|
where_write = "/tmp/result.jpg"
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--weights', nargs='+', type=str, default='runs/train/exp/weights/yolov5m6_face.pt', help='model.pt path(s)')
|
||||||
|
parser.add_argument('--image', type=str, default=where_read, help='source') # file/folder
|
||||||
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
print(opt)
|
||||||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
model = load_model(opt.weights, device)
|
||||||
|
landmarks_all = detect_one(model, opt.image, device, where_write)
|
||||||
|
l = landmarks_all
|
||||||
|
#left eye, right eye, nose, left mouth, right mouth, left inner eyebrow, right inner eyebrow (X, Y)
|
||||||
|
print('{ "el":[%f,%f], "er":[%f,%f], "nn":[%f,%f], "ml":[%f,%f], "mr":[%f,%f], "il":[%f,%f], "ir":[%f,%f], "xyxy":[%d,%d,%d,%d] }' % ( l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8], l[9], l[10], l[11], l[12], l[13], l[14], l[15], l[16], l[17] ))
|
||||||
|
#print("Landmarks:", landmarks_all)
|
||||||
152
src/facematch.py
Normal file
152
src/facematch.py
Normal file
@ -0,0 +1,152 @@
|
|||||||
|
#!/usr/bin/python
|
||||||
|
"""
|
||||||
|
#
|
||||||
|
# DISPENSION CONFIDENTIAL
|
||||||
|
#
|
||||||
|
# [2020] - [2021] Dispension Industries Limited.
|
||||||
|
# Portions Copyright © 2014-2020 Atlantean Technical Solutions Limited
|
||||||
|
# with full rights granted to Dispension & Successors.
|
||||||
|
#
|
||||||
|
# All Rights Reserved.
|
||||||
|
#
|
||||||
|
# NOTICE: All information contained herein is, and remains
|
||||||
|
# the property of Dispension Industries Limited.
|
||||||
|
# The intellectual and technical concepts contained
|
||||||
|
# herein are proprietary to Dispension Industries Limited
|
||||||
|
# and its suppliers and may be covered by U.S. and Foreign Patents,
|
||||||
|
# patents in process, and are protected by trade secret or copyright law.
|
||||||
|
# Dissemination of this information or reproduction of this material
|
||||||
|
# is strictly forbidden unless prior written permission is obtained
|
||||||
|
# from Dispension Industries Limited.
|
||||||
|
#
|
||||||
|
|
||||||
|
Use Paravision recognition SDK to compare two images of faces
|
||||||
|
Returns face quality scores of both images and a match score
|
||||||
|
Quality score range from 0 to 1, where 1 is highest quality for face recognition / matching
|
||||||
|
Match score ranges from 400 to 700, where higher score is higher chance of match
|
||||||
|
"""
|
||||||
|
from paravision.recognition import SDK, Engine
|
||||||
|
from paravision.recognition.utils import load_image
|
||||||
|
from paravision.recognition.exceptions import ParavisionException
|
||||||
|
import json
|
||||||
|
import urllib.request
|
||||||
|
|
||||||
|
import time
|
||||||
|
|
||||||
|
from ukdi import UKDI
|
||||||
|
|
||||||
|
class Facematch(UKDI):
|
||||||
|
|
||||||
|
name = "paravision_face_match"
|
||||||
|
IN_ENGLISH = "A class for checking the similarity between two faces."
|
||||||
|
dev1 = "some_device"
|
||||||
|
dev2 = "some_other_device"
|
||||||
|
|
||||||
|
# Load the config
|
||||||
|
conf = []
|
||||||
|
with open("/etc/ukdi.json","r") as f:
|
||||||
|
conf = json.loads(f.read())
|
||||||
|
|
||||||
|
# Load Paravision SDK
|
||||||
|
sdk = SDK(engine=Engine.OPENVINO)
|
||||||
|
|
||||||
|
#id_image_filepath = '/home/lucas-acm/Dispension/UKDI_testdata/LW_cardscan/Portrait_0.jpg'
|
||||||
|
#photo_image_filepath = '/home/lucas-acm/Dispension/UKDI_testdata/LW.jpg'
|
||||||
|
#id_image_filepath = '/tmp/regula/Portrait_0.jpg'
|
||||||
|
#photo_image_filepath = '/home/disp/Pictures/realsense_test.jpg'
|
||||||
|
|
||||||
|
def load(self, dev1, dev2, id_image_filepath, photo_image_filepath):
|
||||||
|
self.dev1 = dev1
|
||||||
|
self.dev2 = dev2
|
||||||
|
try:
|
||||||
|
# Load images
|
||||||
|
self.id_image = load_image(id_image_filepath)
|
||||||
|
self.photo_image = load_image(photo_image_filepath)
|
||||||
|
print("++++++++++++++++ ",self.id_image)
|
||||||
|
return True
|
||||||
|
|
||||||
|
except:
|
||||||
|
return None
|
||||||
|
|
||||||
|
def get_faces(self):
|
||||||
|
try:
|
||||||
|
# Get all faces from images with qualities, landmarks, and embeddings
|
||||||
|
self.inference_result = self.sdk.get_faces([self.id_image, self.photo_image], qualities=True, landmarks=True, embeddings=True)
|
||||||
|
self.image_inference_result = self.inference_result.image_inferences
|
||||||
|
if len(self.image_inference_result)==0:
|
||||||
|
return "no inferences found"
|
||||||
|
|
||||||
|
# Get most prominent face
|
||||||
|
self.id_face = self.image_inference_result[0].most_prominent_face_index()
|
||||||
|
self.photo_face = self.image_inference_result[1].most_prominent_face_index()
|
||||||
|
if self.id_face<0:
|
||||||
|
return "no id face found"
|
||||||
|
if self.photo_face<0:
|
||||||
|
return "no live face found"
|
||||||
|
|
||||||
|
# Get numerical representation of faces (required for face match)
|
||||||
|
if (len(self.image_inference_result)<2):
|
||||||
|
return "ID or human face could not be recognised"
|
||||||
|
self.id_emb = self.image_inference_result[0].faces[self.id_face].embedding
|
||||||
|
self.photo_emb = self.image_inference_result[1].faces[self.photo_face].embedding
|
||||||
|
|
||||||
|
except Exception as ex:
|
||||||
|
return "image processing exception "+str(ex)
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
# return " id=%d photo=%d result=%d " % (self.id_face, self.photo_face, len(self.image_inference_result))
|
||||||
|
|
||||||
|
|
||||||
|
def compute_scores(self):
|
||||||
|
try:
|
||||||
|
# Get image quality scores (how 'good' a face is)
|
||||||
|
self.id_qual = self.image_inference_result[0].faces[self.id_face].quality
|
||||||
|
self.photo_qual = self.image_inference_result[1].faces[self.photo_face].quality
|
||||||
|
|
||||||
|
self.id_qual = round(self.id_qual, 3)
|
||||||
|
self.photo_qual = round(self.photo_qual, 3)
|
||||||
|
|
||||||
|
# Get face match score
|
||||||
|
self.match_score = self.sdk.get_match_score(self.id_emb, self.photo_emb)
|
||||||
|
|
||||||
|
# Create .json
|
||||||
|
self.face_match_json = {"device1":self.dev1,
|
||||||
|
"device2":self.dev2,
|
||||||
|
"passmark":500,
|
||||||
|
"device1_qual":self.id_qual,
|
||||||
|
"device2_qual":self.photo_qual,
|
||||||
|
"match_score":self.match_score}
|
||||||
|
|
||||||
|
#return json.dumps(self.face_match_json)
|
||||||
|
|
||||||
|
#print(self.face_match_json)
|
||||||
|
|
||||||
|
# Send to core
|
||||||
|
#url = "%s/notify/%s/%s" % (self.conf["core"], self.conf["identity"], face_match_json)
|
||||||
|
#url = url.replace(" ", "%20") # Remove spaces
|
||||||
|
#buf = []
|
||||||
|
#req = urllib.request.Request( url )
|
||||||
|
#with urllib.request.urlopen(req) as response:
|
||||||
|
#print(response.read())
|
||||||
|
|
||||||
|
except Exception as ex:
|
||||||
|
return str(ex)
|
||||||
|
|
||||||
|
|
||||||
|
def get_scores(self):
|
||||||
|
return json.dumps(self.face_match_json)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
id = '/tmp/regula/Portrait_0.jpg'
|
||||||
|
rs = '/tmp/localcam.png'
|
||||||
|
m = Facematch()
|
||||||
|
m.load("regula","localcam",id, rs)
|
||||||
|
m.get_faces()
|
||||||
|
print(m.compute_scores())
|
||||||
|
scores = m.get_scores()
|
||||||
|
print(scores)
|
||||||
|
print("--- %s seconds ---" % (time.time() - start_time))
|
||||||
152
src/facematch_open.py
Normal file
152
src/facematch_open.py
Normal file
@ -0,0 +1,152 @@
|
|||||||
|
#!/usr/bin/python
|
||||||
|
"""
|
||||||
|
#
|
||||||
|
# DISPENSION CONFIDENTIAL
|
||||||
|
#
|
||||||
|
# [2020] - [2021] Dispension Industries Limited.
|
||||||
|
# Portions Copyright © 2014-2020 Atlantean Technical Solutions Limited
|
||||||
|
# with full rights granted to Dispension & Successors.
|
||||||
|
#
|
||||||
|
# All Rights Reserved.
|
||||||
|
#
|
||||||
|
# NOTICE: All information contained herein is, and remains
|
||||||
|
# the property of Dispension Industries Limited.
|
||||||
|
# The intellectual and technical concepts contained
|
||||||
|
# herein are proprietary to Dispension Industries Limited
|
||||||
|
# and its suppliers and may be covered by U.S. and Foreign Patents,
|
||||||
|
# patents in process, and are protected by trade secret or copyright law.
|
||||||
|
# Dissemination of this information or reproduction of this material
|
||||||
|
# is strictly forbidden unless prior written permission is obtained
|
||||||
|
# from Dispension Industries Limited.
|
||||||
|
#
|
||||||
|
|
||||||
|
Old:
|
||||||
|
Use Paravision recognition SDK to compare two images of faces
|
||||||
|
Returns face quality scores of both images and a match score
|
||||||
|
Quality score range from 0 to 1, where 1 is highest quality for face recognition / matching
|
||||||
|
Match score ranges from 400 to 700, where higher score is higher chance of match
|
||||||
|
|
||||||
|
New:
|
||||||
|
As of Dec 2022, use an open source equivalent to paravision
|
||||||
|
"""
|
||||||
|
# supt apt install cmake (for building face_recognition)
|
||||||
|
# sudo pip3 install opencv2
|
||||||
|
# sudo pip3 install face_recognition
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import face_recognition
|
||||||
|
import json
|
||||||
|
import urllib.request
|
||||||
|
|
||||||
|
import time
|
||||||
|
|
||||||
|
from ukdi import UKDI
|
||||||
|
|
||||||
|
class Facematch(UKDI):
|
||||||
|
|
||||||
|
name = "face_recognition_face_match"
|
||||||
|
IN_ENGLISH = "A class for checking the similarity between two faces."
|
||||||
|
dev1 = "some_device"
|
||||||
|
dev2 = "some_other_device"
|
||||||
|
id_qual = 0.7
|
||||||
|
photo_qual = 0.7
|
||||||
|
|
||||||
|
# Load the config
|
||||||
|
conf = []
|
||||||
|
with open("/etc/ukdi.json","r") as f:
|
||||||
|
conf = json.loads(f.read())
|
||||||
|
|
||||||
|
|
||||||
|
#id_image_filepath = '/home/lucas-acm/Dispension/UKDI_testdata/LW_cardscan/Portrait_0.jpg'
|
||||||
|
#photo_image_filepath = '/home/lucas-acm/Dispension/UKDI_testdata/LW.jpg'
|
||||||
|
#id_image_filepath = '/tmp/regula/Portrait_0.jpg'
|
||||||
|
#photo_image_filepath = '/home/disp/Pictures/realsense_test.jpg'
|
||||||
|
|
||||||
|
def load(self, dev1, dev2, id_image_filepath, photo_image_filepath):
|
||||||
|
self.dev1 = dev1
|
||||||
|
self.dev2 = dev2
|
||||||
|
print("id_image_filepath: " + id_image_filepath)
|
||||||
|
try:
|
||||||
|
# load/encode pic1
|
||||||
|
img1 = cv2.imread(id_image_filepath)
|
||||||
|
self.id_image = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
|
||||||
|
|
||||||
|
# load/encode pic2
|
||||||
|
img2 = cv2.imread(photo_image_filepath)
|
||||||
|
self.photo_image = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
|
||||||
|
|
||||||
|
#cv2.imshow("id..",self.id_image)
|
||||||
|
#cv2.imshow("id..",self.photo_image)
|
||||||
|
#cv2.waitKey(0)
|
||||||
|
|
||||||
|
return True
|
||||||
|
except:
|
||||||
|
return None
|
||||||
|
|
||||||
|
def get_faces(self):
|
||||||
|
print("** get_faces ...")
|
||||||
|
try:
|
||||||
|
# Get all faces from images with qualities, landmarks, and embeddings
|
||||||
|
boxes = face_recognition.face_locations(self.photo_image, number_of_times_to_upsample=2, model='hog')
|
||||||
|
#print("n boxes = ", boxes)
|
||||||
|
if len(boxes)==0:
|
||||||
|
return "no inferences found"
|
||||||
|
|
||||||
|
# Get numerical representation of faces (required for face match)
|
||||||
|
self.id_enc = face_recognition.face_encodings(self.id_image)[0]
|
||||||
|
self.photo_enc = face_recognition.face_encodings(self.photo_image)[0]
|
||||||
|
|
||||||
|
#print(self.id_enc)
|
||||||
|
#print(self.photo_enc)
|
||||||
|
|
||||||
|
except Exception as ex:
|
||||||
|
return "image processing exception "+str(ex)
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
# return " id=%d photo=%d result=%d " % (self.id_face, self.photo_face, len(self.image_inference_result))
|
||||||
|
|
||||||
|
|
||||||
|
def compute_scores(self):
|
||||||
|
print("** computing...")
|
||||||
|
try:
|
||||||
|
|
||||||
|
# compare
|
||||||
|
res = face_recognition.compare_faces([self.id_enc], self.photo_enc)
|
||||||
|
|
||||||
|
print("Match is ",res)
|
||||||
|
|
||||||
|
self.match_score = 1000 * (1 - face_recognition.face_distance([self.id_enc], self.photo_enc))
|
||||||
|
print("Score is ",self.match_score)
|
||||||
|
|
||||||
|
# Create .json
|
||||||
|
self.face_match_json = {"device1":self.dev1,
|
||||||
|
"device2":self.dev2,
|
||||||
|
"passmark":380,
|
||||||
|
"device1_qual":0.5,
|
||||||
|
"device2_qual":0.5,
|
||||||
|
"match_score":self.match_score[0]}
|
||||||
|
|
||||||
|
except Exception as ex:
|
||||||
|
return "image comparison exception "+str(ex)
|
||||||
|
|
||||||
|
|
||||||
|
def get_scores(self):
|
||||||
|
return json.dumps(self.face_match_json)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
id = '/tmp/regula/Portrait_0.jpg'
|
||||||
|
rs = '/tmp/localcam.png'
|
||||||
|
m = Facematch()
|
||||||
|
m.load("regula","localcam",id, rs)
|
||||||
|
print(m.get_faces())
|
||||||
|
print(m.compute_scores())
|
||||||
|
scores = m.get_scores()
|
||||||
|
print(scores)
|
||||||
|
print("--- %s seconds ---" % (time.time() - start_time))
|
||||||
|
|
||||||
|
|
||||||
103
src/para_vision.py
Normal file
103
src/para_vision.py
Normal file
@ -0,0 +1,103 @@
|
|||||||
|
#!/usr/bin/python
|
||||||
|
"""
|
||||||
|
#
|
||||||
|
# DISPENSION CONFIDENTIAL
|
||||||
|
#
|
||||||
|
# [2020] - [2021] Dispension Industries Limited.
|
||||||
|
# Portions Copyright © 2014-2020 Atlantean Technical Solutions Limited
|
||||||
|
# with full rights granted to Dispension & Successors.
|
||||||
|
#
|
||||||
|
# All Rights Reserved.
|
||||||
|
#
|
||||||
|
# NOTICE: All information contained herein is, and remains
|
||||||
|
# the property of Dispension Industries Limited.
|
||||||
|
# The intellectual and technical concepts contained
|
||||||
|
# herein are proprietary to Dispension Industries Limited
|
||||||
|
# and its suppliers and may be covered by U.S. and Foreign Patents,
|
||||||
|
# patents in process, and are protected by trade secret or copyright law.
|
||||||
|
# Dissemination of this information or reproduction of this material
|
||||||
|
# is strictly forbidden unless prior written permission is obtained
|
||||||
|
# from Dispension Industries Limited.
|
||||||
|
#
|
||||||
|
# Dont call this file "paravision.py" to avoid name collisions/
|
||||||
|
|
||||||
|
|
||||||
|
Use Paravision recognition SDK to compare two images of faces
|
||||||
|
Returns face quality scores of both images and a match score
|
||||||
|
Quality score range from 0 to 1, where 1 is highest quality for face recognition / matching
|
||||||
|
Match score ranges from 400 to 700, where higher score is higher chance of match
|
||||||
|
"""
|
||||||
|
from paravision.recognition import SDK, Engine
|
||||||
|
import paravision.recognition.utils as pru
|
||||||
|
from paravision.recognition.exceptions import ParavisionException
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
|
||||||
|
from ukdi import UKDI
|
||||||
|
|
||||||
|
class Para_vision(UKDI):
|
||||||
|
|
||||||
|
name = "para_vision"
|
||||||
|
IN_ENGLISH = "A software device for face recognition."
|
||||||
|
|
||||||
|
def init(self):
|
||||||
|
try:
|
||||||
|
self.sdk = SDK(engine=Engine.AUTO)
|
||||||
|
except ParavisionException:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def read(self, imgpath):
|
||||||
|
if not os.path.exists(imgpath):
|
||||||
|
print("File not found ",imgpath)
|
||||||
|
return False
|
||||||
|
self.imgpath = imgpath
|
||||||
|
self.image = pru.load_image(imgpath)
|
||||||
|
print(self.image)
|
||||||
|
return True
|
||||||
|
|
||||||
|
def process(self):
|
||||||
|
# Get all faces metadata
|
||||||
|
print("Finding faces in %s" %(self.imgpath))
|
||||||
|
faces = self.sdk.get_faces([self.image], qualities=True, landmarks=True, embeddings=True)
|
||||||
|
print("Getting metadata")
|
||||||
|
inferences = faces.image_inferences
|
||||||
|
print("Getting best face")
|
||||||
|
ix = inferences[0].most_prominent_face_index()
|
||||||
|
print("Getting a mathematical mode of that best face")
|
||||||
|
self.model = inferences[0].faces[ix].embedding
|
||||||
|
print("Getting image quality scores..")
|
||||||
|
self.score = round(1000*inferences[0].faces[ix].quality)
|
||||||
|
print("Score was %d" %(self.score))
|
||||||
|
return self.score
|
||||||
|
|
||||||
|
def compare(self,other):
|
||||||
|
# Get face match score
|
||||||
|
return self.sdk.get_match_score(self.model, other.model)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
#start_time = time.time()
|
||||||
|
|
||||||
|
print("Instantiating...")
|
||||||
|
m = Para_vision()
|
||||||
|
m.init()
|
||||||
|
print("Reading...")
|
||||||
|
m.read("/tmp/LW.jpg")
|
||||||
|
print("Processing")
|
||||||
|
q1 = m.process()
|
||||||
|
# sys.exit(0)
|
||||||
|
|
||||||
|
n = Para_vision()
|
||||||
|
n.init()
|
||||||
|
start_time = time.time()
|
||||||
|
n.read("/tmp/id.jpg")
|
||||||
|
q2 = n.process()
|
||||||
|
|
||||||
|
score = m.compare(n)
|
||||||
|
print("qual1 = %d, qual2 = %d, match = %d" % (q1,q2,score) )
|
||||||
|
print("--- %s seconds ---" % (time.time() - start_time))
|
||||||
|
exit()
|
||||||
|
|
||||||
140
src/realsense.py
Normal file
140
src/realsense.py
Normal file
@ -0,0 +1,140 @@
|
|||||||
|
#!/usr/bin/python
|
||||||
|
"""
|
||||||
|
#
|
||||||
|
# DISPENSION CONFIDENTIAL
|
||||||
|
#
|
||||||
|
# [2020] - [2021] Dispension Industries Limited.
|
||||||
|
# Portions Copyright © 2014-2020 Atlantean Technical Solutions Limited
|
||||||
|
# with full rights granted to Dispension & Successors.
|
||||||
|
#
|
||||||
|
# All Rights Reserved.
|
||||||
|
#
|
||||||
|
# NOTICE: All information contained herein is, and remains
|
||||||
|
# the property of Dispension Industries Limited.
|
||||||
|
# The intellectual and technical concepts contained
|
||||||
|
# herein are proprietary to Dispension Industries Limited
|
||||||
|
# and its suppliers and may be covered by U.S. and Foreign Patents,
|
||||||
|
# patents in process, and are protected by trade secret or copyright law.
|
||||||
|
# Dissemination of this information or reproduction of this material
|
||||||
|
# is strictly forbidden unless prior written permission is obtained
|
||||||
|
# from Dispension Industries Limited.
|
||||||
|
#
|
||||||
|
|
||||||
|
sudo apt install python3-opencv
|
||||||
|
pip3 install pyrealsense2
|
||||||
|
pip3 install pyusb
|
||||||
|
"""
|
||||||
|
import cv2
|
||||||
|
import base64
|
||||||
|
import pyrealsense2 as rs
|
||||||
|
import numpy as np
|
||||||
|
from usb.core import find as finddev
|
||||||
|
|
||||||
|
import time
|
||||||
|
|
||||||
|
from ukdiusb import UKDIUSB
|
||||||
|
|
||||||
|
|
||||||
|
class Realsense(UKDIUSB):
|
||||||
|
|
||||||
|
name = "realsense_camera"
|
||||||
|
IN_ENGLISH = "A class for taking a photo with a RealSense D415 Camera."
|
||||||
|
VENDOR_ID = 0x8086
|
||||||
|
PRODUCT_ID = 0x0ad3
|
||||||
|
INTERFACE_ID = 0
|
||||||
|
|
||||||
|
def decode(self, arr):
|
||||||
|
return self.data
|
||||||
|
|
||||||
|
def describe(self):
|
||||||
|
return "UKDI RealSense camera read"
|
||||||
|
|
||||||
|
def reset(self):
|
||||||
|
# Find camera usb
|
||||||
|
# get this from lsusb -vd VEND:PROD
|
||||||
|
dev = finddev(idVendor=self.VENDOR_ID, idProduct=self.PRODUCT_ID )
|
||||||
|
# Reset usb to solve issue with camera not returning frames after 10-20 images taken
|
||||||
|
dev.reset()
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
def open(self):
|
||||||
|
# Initialize pipeline and config
|
||||||
|
try:
|
||||||
|
self.pipeline = rs.pipeline()
|
||||||
|
self.config = rs.config()
|
||||||
|
|
||||||
|
# Set depth and color configs
|
||||||
|
#self.config.enable_stream(rs.stream.depth, 1280, 720, rs.format.z16, 30)
|
||||||
|
#self.config.enable_stream(rs.stream.color, 1280, 720, rs.format.bgr8, 30)
|
||||||
|
self.config.enable_stream(rs.stream.depth, 1280, 720, rs.format.z16, 30)
|
||||||
|
self.config.enable_stream(rs.stream.color, 1280, 720, rs.format.rgb8, 30)
|
||||||
|
self.profile = self.pipeline.start(self.config)
|
||||||
|
|
||||||
|
# Get the sensor once at the beginning. (Sensor index: 1)
|
||||||
|
self.sensor = self.pipeline.get_active_profile().get_device().query_sensors()[1]
|
||||||
|
|
||||||
|
# Set the exposure so that it is not dark on the first frame (can be adjusted depending on lighting)
|
||||||
|
self.sensor.set_option(rs.option.exposure, 750.000)
|
||||||
|
except Exception as ex:
|
||||||
|
return str(ex)
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
self.pipeline.stop()
|
||||||
|
self.reset()
|
||||||
|
super().close()
|
||||||
|
return True
|
||||||
|
|
||||||
|
def hid_read(self):
|
||||||
|
# Get frames
|
||||||
|
self.data = self.pipeline.wait_for_frames()
|
||||||
|
|
||||||
|
# Align depth and color
|
||||||
|
self.align_to = rs.stream.color
|
||||||
|
self.align = rs.align(self.align_to)
|
||||||
|
self.aligned_frames = self.align.process(self.data)
|
||||||
|
#self.aligned_depth_frame = self.aligned_frames.get_depth_frame()
|
||||||
|
self.color_frame = self.aligned_frames.get_color_frame()
|
||||||
|
|
||||||
|
# Get depth image
|
||||||
|
#self.depth_data = np.asanyarray(self.aligned_depth_frame.get_data())
|
||||||
|
|
||||||
|
# Get color image
|
||||||
|
self.color_data = np.asanyarray(self.color_frame.get_data())
|
||||||
|
|
||||||
|
filename = '/home/disp/Pictures/realsense_test.jpg'
|
||||||
|
cv2.imwrite(filename, self.color_data)
|
||||||
|
#filename = '/home/lucas-acm/Dispension/UKDI_testdata/LW-realsense.jpg'
|
||||||
|
#cv2.imwrite(filename, self.color_data)
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
# return a PNG version of the pic in memory
|
||||||
|
def png(self):
|
||||||
|
_ , im_arr = cv2.imencode('.png', self.color_data)
|
||||||
|
img_as_txt = base64.b64encode(im_arr)
|
||||||
|
return b'data:image/png;base64, '+img_as_txt
|
||||||
|
|
||||||
|
# return a JPG version of the pic in memory
|
||||||
|
def jpg(self):
|
||||||
|
_ , im_arr = cv2.imencode('.jpg', self.color_data)
|
||||||
|
img_as_txt = base64.b64encode(im_arr)
|
||||||
|
return b'data:image/jpeg;base64,'+img_as_txt
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
start_time = time.time()
|
||||||
|
m = Realsense()
|
||||||
|
m.reset()
|
||||||
|
m.open()
|
||||||
|
m.hid_read()
|
||||||
|
print(m.jpg())
|
||||||
|
m.close()
|
||||||
|
|
||||||
|
print("--- %s seconds ---" % (time.time() - start_time))
|
||||||
|
|
||||||
|
|
||||||
110
src/seek.py
Normal file
110
src/seek.py
Normal file
@ -0,0 +1,110 @@
|
|||||||
|
#!/usr/bin/python
|
||||||
|
"""
|
||||||
|
#
|
||||||
|
# DISPENSION CONFIDENTIAL
|
||||||
|
#
|
||||||
|
# [2020] - [2021] Dispension Industries Limited.
|
||||||
|
# Portions Copyright © 2014-2020 Atlantean Technical Solutions Limited
|
||||||
|
# with full rights granted to Dispension & Successors.
|
||||||
|
#
|
||||||
|
# All Rights Reserved.
|
||||||
|
#
|
||||||
|
# NOTICE: All information contained herein is, and remains
|
||||||
|
# the property of Dispension Industries Limited.
|
||||||
|
# The intellectual and technical concepts contained
|
||||||
|
# herein are proprietary to Dispension Industries Limited
|
||||||
|
# and its suppliers and may be covered by U.S. and Foreign Patents,
|
||||||
|
# patents in process, and are protected by trade secret or copyright law.
|
||||||
|
# Dissemination of this information or reproduction of this material
|
||||||
|
# is strictly forbidden unless prior written permission is obtained
|
||||||
|
# from Dispension Industries Limited.
|
||||||
|
#
|
||||||
|
|
||||||
|
Read a Seek Thermal camera
|
||||||
|
Changed to a py3 Class with better error reporting and UKDI compliance - Carl Goodwin Jan 2021.
|
||||||
|
sudo apt install python3-opencv
|
||||||
|
sudo pip3 install pyusb
|
||||||
|
"""
|
||||||
|
import sys
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
import base64
|
||||||
|
import subprocess
|
||||||
|
import json
|
||||||
|
|
||||||
|
from ukdi import UKDI
|
||||||
|
|
||||||
|
import time
|
||||||
|
|
||||||
|
class Seek(UKDI):
|
||||||
|
|
||||||
|
# get this from lsusb -vd VEND:PROD
|
||||||
|
CAM = None
|
||||||
|
campath = "/home/disp/cam_seek/bin/seek"
|
||||||
|
X = 1902
|
||||||
|
Y = 1080
|
||||||
|
min = 0.0
|
||||||
|
max = 0.0
|
||||||
|
device = "cpu"
|
||||||
|
|
||||||
|
def decode(self, arr):
|
||||||
|
return self.data
|
||||||
|
|
||||||
|
def describe(self):
|
||||||
|
return "UKDI Seek camera read"
|
||||||
|
|
||||||
|
|
||||||
|
def open(self):
|
||||||
|
# does nothing
|
||||||
|
return
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
# does nothing
|
||||||
|
return
|
||||||
|
|
||||||
|
# Red the image from a camera as numpy-ready CSV buffer.
|
||||||
|
def hid_read(self):
|
||||||
|
result = subprocess.run([self.campath], stdout=subprocess.PIPE)
|
||||||
|
rows = result.stdout.split(b'\n')
|
||||||
|
print(rows[0],rows[1],rows[3],rows[4])
|
||||||
|
self.X = int(rows[0].decode("utf-8"))
|
||||||
|
self.Y = int(rows[1].decode("utf-8"))
|
||||||
|
self.min = float(rows[3].decode("utf-8"))
|
||||||
|
self.max = float(rows[4].decode("utf-8"))
|
||||||
|
print("Image dimensions, min and mix: ",self.X, self.Y, self.min, self.max)
|
||||||
|
self.data = np.fromstring(rows[2].decode("utf-8"), dtype=float, sep=',')
|
||||||
|
self.data = np.reshape(self.data, (self.X, self.Y))
|
||||||
|
self.data = (np.rot90(self.data)-self.min)*(255/(self.max-self.min))
|
||||||
|
return True
|
||||||
|
|
||||||
|
# return a PNG version of the pic in memory
|
||||||
|
def png(self):
|
||||||
|
_ , im_arr = cv2.imencode('.png', self.data)
|
||||||
|
img_as_txt = base64.b64encode(im_arr)
|
||||||
|
return b'data:image/png;base64, '+img_as_txt
|
||||||
|
|
||||||
|
# return a JPG version of the pic in memory
|
||||||
|
def jpg(self):
|
||||||
|
_ , im_arr = cv2.imencode('.jpg', self.data)
|
||||||
|
img_as_txt = base64.b64encode(im_arr)
|
||||||
|
return b'data:image/jpeg;base64,'+img_as_txt
|
||||||
|
|
||||||
|
# return a BMP version of the pic in memory
|
||||||
|
def bmp(self):
|
||||||
|
_ , im_arr = cv2.imencode('.bmp', self.data)
|
||||||
|
img_as_txt = base64.b64encode(im_arr)
|
||||||
|
return b'data:image/bmp;base64,'+img_as_txt
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
print("init..")
|
||||||
|
m = Seek()
|
||||||
|
print("open..")
|
||||||
|
m.open()
|
||||||
|
print("read..")
|
||||||
|
if m.hid_read():
|
||||||
|
print(m.data)
|
||||||
|
print(m.data.shape)
|
||||||
|
t1 = time.time()
|
||||||
|
m.close()
|
||||||
|
|
||||||
53
src/vein.py
Normal file
53
src/vein.py
Normal file
@ -0,0 +1,53 @@
|
|||||||
|
# Load the 600x600 image and convert to grayscale
|
||||||
|
img = cv2.imread("pic.jpg")
|
||||||
|
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||||
|
noiseReduced = cv2.fastNlMeansDenoising(gray)
|
||||||
|
|
||||||
|
# equalize hist
|
||||||
|
kernel = np.ones((7,7),np.uint8)
|
||||||
|
img = cv2.morphologyEx(noiseReduced, cv2.MORPH_OPEN, kernel)
|
||||||
|
img_yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)
|
||||||
|
img_yuv[:,:,0] = cv2.equalizeHist(img_yuv[:,:,0])
|
||||||
|
img_output = cv2.cvtColor(img_yuv, cv2.COLOR_YUV2BGR)
|
||||||
|
|
||||||
|
# skeletonize
|
||||||
|
img = gray.copy()
|
||||||
|
skel = img.copy()
|
||||||
|
skel[:,:] = 0
|
||||||
|
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5,5))
|
||||||
|
while cv2.countNonZero(img) > 0:
|
||||||
|
eroded = cv2.morphologyEx(img, cv2.MORPH_ERODE, kernel)
|
||||||
|
temp = cv2.morphologyEx(eroded, cv2.MORPH_DILATE, kernel)
|
||||||
|
temp = cv2.subtract(img, temp)
|
||||||
|
skel = cv2.bitwise_or(skel, temp)
|
||||||
|
img[:,:] = eroded[:,:]
|
||||||
|
|
||||||
|
# threshold
|
||||||
|
ret, thr = cv2.threshold(skel, 5,255, cv2.THRESH_BINARY);
|
||||||
|
|
||||||
|
# training
|
||||||
|
classes = ["left", "right"]
|
||||||
|
num_right_train = 20
|
||||||
|
num_left_train = 20
|
||||||
|
# 1 for right, 0 for left
|
||||||
|
train_labels = np.array([1]*num_right_train + [0]*num_left_train)
|
||||||
|
train_images = np.array([])
|
||||||
|
for i in range(num_right_train):
|
||||||
|
pic = np.array(Image.open("images/right_thr" + str(i) + ".jpg"))
|
||||||
|
train_images = np.vstack((train_images, np.array([pic])))
|
||||||
|
for i in range(num_left_train):
|
||||||
|
pic = np.array(Image.open("images/left_thr" + str(i) + ".jpg"))
|
||||||
|
train_images = np.vstack((train_images, np.array([pic])))
|
||||||
|
train_images = train_images / 255.0
|
||||||
|
|
||||||
|
# source: https://www.tensorflow.org/tutorials/keras/basic_classification
|
||||||
|
model = keras.Sequential([
|
||||||
|
keras.layers.Flatten(input_shape=(600, 600)), # dimensions of the image
|
||||||
|
keras.layers.Dense(64, activation=tf.nn.relu),
|
||||||
|
keras.layers.Dense(2, activation=tf.nn.softmax)
|
||||||
|
])
|
||||||
|
model.compile(optimizer=tf.train.AdamOptimizer(),
|
||||||
|
loss='sparse_categorical_crossentropy',
|
||||||
|
metrics=['accuracy'])
|
||||||
|
model.fit(train_images, train_labels, epochs=5)
|
||||||
|
|
||||||
492
src/yoloserv.py
Normal file
492
src/yoloserv.py
Normal file
@ -0,0 +1,492 @@
|
|||||||
|
# Pre-reqs: tqdm pandas seaborn thop
|
||||||
|
import cherrypy
|
||||||
|
|
||||||
|
import time
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import json
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
# General image processing
|
||||||
|
import cv2
|
||||||
|
import torch
|
||||||
|
import torch.backends.cudnn as cudnn
|
||||||
|
from numpy import random
|
||||||
|
import copy
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
# Specific YOLO package directories (check you PYTHONPATH)
|
||||||
|
from models.experimental import attempt_load
|
||||||
|
from utils.datasets import letterbox
|
||||||
|
from utils.general import check_img_size, non_max_suppression_face, scale_coords, xyxy2xywh
|
||||||
|
from utils.torch_utils import time_synchronized
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class yoloserv(object):
|
||||||
|
|
||||||
|
yolo = None
|
||||||
|
device = None
|
||||||
|
DEVICE = "cpu"
|
||||||
|
imgdir = None
|
||||||
|
outdir = None
|
||||||
|
face_detector = None
|
||||||
|
palm_detector = None
|
||||||
|
face_matcher = None
|
||||||
|
palm_matcher = None
|
||||||
|
ir_camera = None
|
||||||
|
|
||||||
|
points = []
|
||||||
|
|
||||||
|
|
||||||
|
# Nature of init depends on the required algotithms listed in /etc/ukdi.conf
|
||||||
|
# eg :: "yolo_devices": "detect_face,facematch"
|
||||||
|
# detect_face - - fnd the most significant face in a crowd (works for IR)
|
||||||
|
# paravision - - proprietary face matching (high quality)
|
||||||
|
# facematch - - open source face matching (decent quality)
|
||||||
|
# realsense - - intel realsense camera (unstable at best)
|
||||||
|
# seek - - seek IR camera
|
||||||
|
# palmvein - - palm vein detection
|
||||||
|
def initialise(self):
|
||||||
|
with open("/etc/ukdi.json","r") as f:
|
||||||
|
self.conf = json.loads(f.read())
|
||||||
|
self.device_list = self.conf["yolo_devices"].split(",")
|
||||||
|
self.imgdir = self.conf("yolo_indir")
|
||||||
|
self.outdir = self.conf("yolo_outdir")
|
||||||
|
if "detect_face" in self.device_list and self.conf["emulate_facematch"]==0:
|
||||||
|
self.init_detect_face()
|
||||||
|
if "paravision" in self.device_list and self.conf["emulate_facematch"]==0:
|
||||||
|
self.face_detector = self.init_paravision()
|
||||||
|
if "facematch" in self.device_list and self.conf["emulate_facematch"]==0:
|
||||||
|
self.face_detector = self.init_facematch()
|
||||||
|
if "realsense" in self.device_list:
|
||||||
|
self.face_detector = self.init_realsense()
|
||||||
|
if "seek" in self.device_list:
|
||||||
|
self.ir_camera() = self.seek_init()
|
||||||
|
if "flir" in self.device_list:
|
||||||
|
self.ir_camera() = self.flir_init()
|
||||||
|
if "palmvein" in self.device_list:
|
||||||
|
self.palm_detector = selt.init_palmvein()
|
||||||
|
if "fjpalmvein" in self.device_list:
|
||||||
|
self.palm_detector = selt.init_jvpalmvein()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
dev svc_detect_face(self,imfile):
|
||||||
|
self.face_detector.detect(imfile)
|
||||||
|
|
||||||
|
dev svc_match_face(self,imfile1,imfile2):
|
||||||
|
return self.face_d.detect(imfile1,imfile2)
|
||||||
|
|
||||||
|
dev svc_detect_face(self,imfile):
|
||||||
|
return self.face_detector.detect(imfile)
|
||||||
|
|
||||||
|
dev svc_detect_face(self,imfile):
|
||||||
|
return self.face_detector.detect(imfile)
|
||||||
|
|
||||||
|
|
||||||
|
##### ###### ##### ###### #### #####
|
||||||
|
# # # # # # # #
|
||||||
|
# # ##### # ##### # #
|
||||||
|
# # # # # # #
|
||||||
|
# # # # # # # #
|
||||||
|
##### ###### # ###### #### #
|
||||||
|
|
||||||
|
|
||||||
|
def fm_init(self):
|
||||||
|
print("@@@ initialising facematch")
|
||||||
|
try:
|
||||||
|
self.sdk = SDK(engine=Engine.OPENVINO)
|
||||||
|
except ParavisionException:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def fm_load(self, dev1, dev2, id_image_filepath, photo_image_filepath):
|
||||||
|
self.dev1 = dev1
|
||||||
|
self.dev2 = dev2
|
||||||
|
try:
|
||||||
|
# Load images
|
||||||
|
self.id_image = load_image(id_image_filepath)
|
||||||
|
self.photo_image = load_image(photo_image_filepath)
|
||||||
|
print("++++++++++++++++ ",self.id_image)
|
||||||
|
return True
|
||||||
|
except:
|
||||||
|
return None
|
||||||
|
|
||||||
|
def fm_get_faces(self):
|
||||||
|
try:
|
||||||
|
# Get all faces from images with qualities, landmarks, and embeddings
|
||||||
|
self.inference_result = self.sdk.get_faces([self.id_image, self.photo_image], qualities=True, landmarks=True, embeddings=True)
|
||||||
|
self.image_inference_result = self.inference_result.image_inferences
|
||||||
|
if len(self.image_inference_result)==0:
|
||||||
|
return "no inferences found"
|
||||||
|
|
||||||
|
# Get most prominent face
|
||||||
|
self.id_face = self.image_inference_result[0].most_prominent_face_index()
|
||||||
|
self.photo_face = self.image_inference_result[1].most_prominent_face_index()
|
||||||
|
if self.id_face<0:
|
||||||
|
return "no id face found"
|
||||||
|
if self.photo_face<0:
|
||||||
|
return "no live face found"
|
||||||
|
|
||||||
|
# Get numerical representation of faces (required for face match)
|
||||||
|
if (len(self.image_inference_result)<2):
|
||||||
|
return "ID or human face could not be recognised"
|
||||||
|
self.id_emb = self.image_inference_result[0].faces[self.id_face].embedding
|
||||||
|
self.photo_emb = self.image_inference_result[1].faces[self.photo_face].embedding
|
||||||
|
|
||||||
|
except Exception as ex:
|
||||||
|
return "image processing exception "+str(ex)
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
# return " id=%d photo=%d result=%d " % (self.id_face, self.photo_face, len(self.image_inference_result))
|
||||||
|
|
||||||
|
|
||||||
|
def fm_compute_scores(self):
|
||||||
|
try:
|
||||||
|
# Get image quality scores (how 'good' a face is)
|
||||||
|
self.id_qual = self.image_inference_result[0].faces[self.id_face].quality
|
||||||
|
self.photo_qual = self.image_inference_result[1].faces[self.photo_face].quality
|
||||||
|
|
||||||
|
self.id_qual = round(self.id_qual, 3)
|
||||||
|
self.photo_qual = round(self.photo_qual, 3)
|
||||||
|
|
||||||
|
# Get face match score
|
||||||
|
self.match_score = self.sdk.get_match_score(self.id_emb, self.photo_emb)
|
||||||
|
|
||||||
|
# Create .json
|
||||||
|
self.face_match_json = {"device1":self.dev1,
|
||||||
|
"device2":self.dev2,
|
||||||
|
"passmark":500,
|
||||||
|
"device1_qual":self.id_qual,
|
||||||
|
"device2_qual":self.photo_qual,
|
||||||
|
"match_score":self.match_score}
|
||||||
|
|
||||||
|
#return json.dumps(self.face_match_json)
|
||||||
|
|
||||||
|
#print(self.face_match_json)
|
||||||
|
|
||||||
|
# Send to core
|
||||||
|
#url = "%s/notify/%s/%s" % (self.conf["core"], self.conf["identity"], face_match_json)
|
||||||
|
#url = url.replace(" ", "%20") # Remove spaces
|
||||||
|
#buf = []
|
||||||
|
#req = urllib.request.Request( url )
|
||||||
|
#with urllib.request.urlopen(req) as response:
|
||||||
|
#print(response.read())
|
||||||
|
|
||||||
|
except Exception as ex:
|
||||||
|
return str(ex)
|
||||||
|
|
||||||
|
|
||||||
|
def get_scores(self):
|
||||||
|
return json.dumps(self.face_match_json)
|
||||||
|
|
||||||
|
|
||||||
|
##### ## ##### ## # # # #### # #
|
||||||
|
# # # # # # # # # # # # ## #
|
||||||
|
# # # # # # # # # # # #### # # #
|
||||||
|
##### ###### ##### ###### # # # # # # #
|
||||||
|
# # # # # # # # # # # # # ##
|
||||||
|
# # # # # # # ## # #### # #
|
||||||
|
|
||||||
|
def pv_init(self):
|
||||||
|
print("@@@ initialising paravision")
|
||||||
|
from paravision.recognition import SDK, Engine
|
||||||
|
import paravision.recognition.utils as pru
|
||||||
|
from paravision.recognition.exceptions import ParavisionException
|
||||||
|
try:
|
||||||
|
self.sdk = SDK(engine=Engine.AUTO)
|
||||||
|
except ParavisionException:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def pv_read(self, imgpath):
|
||||||
|
if not os.path.exists(imgpath):
|
||||||
|
print("File not found ",imgpath)
|
||||||
|
return False
|
||||||
|
self.imgpath = imgpath
|
||||||
|
self.image = pru.load_image(imgpath)
|
||||||
|
print(self.image)
|
||||||
|
return True
|
||||||
|
|
||||||
|
def pv_process(self):
|
||||||
|
# Get all faces metadata
|
||||||
|
print("Finding faces in %s" %(self.imgpath))
|
||||||
|
faces = self.sdk.get_faces([self.image], qualities=True, landmarks=True, embeddings=True)
|
||||||
|
print("Getting metadata")
|
||||||
|
inferences = faces.image_inferences
|
||||||
|
print("Getting best face")
|
||||||
|
ix = inferences[0].most_prominent_face_index()
|
||||||
|
print("Getting a mathematical mode of that best face")
|
||||||
|
self.model = inferences[0].faces[ix].embedding
|
||||||
|
print("Getting image quality scores..")
|
||||||
|
self.score = round(1000*inferences[0].faces[ix].quality)
|
||||||
|
print("Score was %d" %(self.score))
|
||||||
|
return self.score
|
||||||
|
|
||||||
|
def pv_compare(self,other):
|
||||||
|
# Get face match score
|
||||||
|
return self.sdk.get_match_score(self.model, other.model)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
###### ## #### ###### # # ##### #### # #
|
||||||
|
# # # # # # ## ## # # # # #
|
||||||
|
##### # # # ##### # ## # # # ######
|
||||||
|
# ###### # # # # # # # #
|
||||||
|
# # # # # # # # # # # # #
|
||||||
|
# # # #### ###### # # # #### # #
|
||||||
|
|
||||||
|
def init_facematch(self):
|
||||||
|
print("@@@ initialising realsense")
|
||||||
|
import pyrealsense2 as rs
|
||||||
|
|
||||||
|
|
||||||
|
##### ###### ## # #### ###### # # ####
|
||||||
|
# # # # # # # # ## # #
|
||||||
|
# # ##### # # # #### ##### # # # ####
|
||||||
|
##### # ###### # # # # # # #
|
||||||
|
# # # # # # # # # # ## # #
|
||||||
|
# # ###### # # ###### #### ###### # # ####
|
||||||
|
|
||||||
|
def init_realsense(self):
|
||||||
|
print("@@@ initialising realsense")
|
||||||
|
import pyrealsense2 as rs
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#### ##### ###### # # #### # #
|
||||||
|
# # # # # ## # # # # #
|
||||||
|
# # # # ##### # # # # # #
|
||||||
|
# # ##### # # # # # # #
|
||||||
|
# # # # # ## # # # #
|
||||||
|
#### # ###### # # #### ##
|
||||||
|
|
||||||
|
def init_opencv(self):
|
||||||
|
print("@@@ initialising opencv")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#######
|
||||||
|
# # #### # #### # # #
|
||||||
|
# # # # # # # # # #
|
||||||
|
# # # # # # # # #####
|
||||||
|
# # # # # # # # #
|
||||||
|
# # # # # # # # # #
|
||||||
|
# #### ###### #### ## #####
|
||||||
|
|
||||||
|
# Set up the model and compute device (takes a while, hence this being a server)
|
||||||
|
# Example weightsfile: runs/train/exp/weights/yolov5m6_face.pt
|
||||||
|
def v5_init(self, imgdir, outdir, weightsfile):
|
||||||
|
print("@@@ initialising yolov5")
|
||||||
|
self.weightsfile = weightsfile
|
||||||
|
self.imgdir = imgdir
|
||||||
|
self.outdir = outdir
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
self.DEVICE = "cuda"
|
||||||
|
print("Setting up the %s device..." % (self.DEVICE))
|
||||||
|
self.device = torch.device(self.DEVICE)
|
||||||
|
print("Setting up the yolo class...")
|
||||||
|
# Returns a processor loaded with the weights and hook to the compute device
|
||||||
|
self.yolo = attempt_load(self.weightsfile, map_location=self.DEVICE) # load FP32 model
|
||||||
|
|
||||||
|
|
||||||
|
# This does all the heavy lifting. Just give it fully qualified file names for input and output images
|
||||||
|
@cherrypy.expose
|
||||||
|
def y5_process(self, imgfile):
|
||||||
|
# Get landmarks for the enarest face
|
||||||
|
l = self.y5_detect_nearest("%s/%s" % (self.imgdir, imgfile))
|
||||||
|
S = json.dumps(self.points)
|
||||||
|
return S
|
||||||
|
#left eye, right eye, nose, left mouth, right mouth, left inner eyebrow, right inner eyebrow (X, Y)
|
||||||
|
#return('{ "el":[%f,%f], "er":[%f,%f], "nn":[%f,%f], "ml":[%f,%f], "mr":[%f,%f], "il":[%f,%f], "ir":[%f,%f], "xyxy":[%d,%d,%d,%d] }'\
|
||||||
|
# % ( l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8], l[9], l[10], l[11], l[12], l[13], l[14], l[15], l[16], l[17] ))
|
||||||
|
#print("Landmarks:", landmarks_all)
|
||||||
|
|
||||||
|
|
||||||
|
# Detect the most significant (biggest, most central) face in the scene.
|
||||||
|
# This method is kind of ugly and does everything at once. Refactor?
|
||||||
|
def y5_detect_nearest(self, imgfile, just_the_face=False):
|
||||||
|
print("Detecting ",imgfile)
|
||||||
|
# Set some config and load the image
|
||||||
|
img_size = 320
|
||||||
|
conf_thres = 0.3
|
||||||
|
iou_thres = 0.5
|
||||||
|
|
||||||
|
# Load the image and make some copies
|
||||||
|
orgimg = cv2.imread(imgfile) # BGR
|
||||||
|
img0 = copy.deepcopy(orgimg)
|
||||||
|
out_img = copy.deepcopy(orgimg)
|
||||||
|
assert orgimg is not None, 'Image Not Found %s' % (imgfile)
|
||||||
|
h0, w0 = orgimg.shape[:2] # orig hw
|
||||||
|
|
||||||
|
# reformat and resize the image
|
||||||
|
r = img_size / max(h0, w0)
|
||||||
|
if r != 1: # always resize down, only resize up if training with augmentation
|
||||||
|
interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR
|
||||||
|
img0 = cv2.resize(img0, (int(w0 * r), int(h0 * r)), interpolation=interp)
|
||||||
|
imgsz = check_img_size(img_size, s=self.yolo.stride.max()) # check img_size
|
||||||
|
img = letterbox(img0, new_shape=imgsz)[0]
|
||||||
|
img = img[:, :, ::-1].transpose(2, 0, 1).copy() # BGR to RGB, to 3x416x416
|
||||||
|
|
||||||
|
# Convert the image to a torch image (tensor) values 0->1
|
||||||
|
img = torch.from_numpy(img).to(self.device)
|
||||||
|
img = img.float() # uint8 to fp16/32
|
||||||
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||||||
|
if img.ndimension() == 3:
|
||||||
|
img = img.unsqueeze(0)
|
||||||
|
#print(img)
|
||||||
|
|
||||||
|
# Find all faces
|
||||||
|
# This fails on some versions of yolo. If it does:
|
||||||
|
# sudo vi `locate upsampling.py`
|
||||||
|
# COmment out "recompute_scale_factor=self.recompute_scale_factor)" at about line 157
|
||||||
|
all_faces = self.yolo(img)
|
||||||
|
face0 = all_faces[0]
|
||||||
|
|
||||||
|
# Apply NMS
|
||||||
|
face = non_max_suppression_face(face0, conf_thres, iou_thres)
|
||||||
|
|
||||||
|
print('img.shape: ', img.shape)
|
||||||
|
print('orgimg.shape: ', orgimg.shape)
|
||||||
|
|
||||||
|
landmarks = []
|
||||||
|
landmarks_eyebrows = []
|
||||||
|
xyxy = []
|
||||||
|
# Process detections
|
||||||
|
for i, det in enumerate(face): # detections per image
|
||||||
|
gn = torch.tensor(orgimg.shape)[[1, 0, 1, 0]].to(self.device) # normalization gain whwh
|
||||||
|
gn_lks = torch.tensor(orgimg.shape)[[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]].to(self.device) # normalization gain landmarks
|
||||||
|
if len(det):
|
||||||
|
# Rescale boxes from img_size to im0 size
|
||||||
|
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], orgimg.shape).round()
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
for c in det[:, -1].unique():
|
||||||
|
n = (det[:, -1] == c).sum() # detections per class
|
||||||
|
|
||||||
|
det[:, 5:15] = self.y5_scale_coords_landmarks(img.shape[2:], det[:, 5:15], orgimg.shape).round()
|
||||||
|
|
||||||
|
for j in range(det.size()[0]):
|
||||||
|
xywh = (xyxy2xywh(det[j, :4].view(1, 4)) / gn).view(-1).tolist()
|
||||||
|
conf = det[j, 4].cpu().numpy()
|
||||||
|
landmarks = (det[j, 5:15].view(1, 10) / gn_lks).view(-1).tolist()
|
||||||
|
class_num = det[j, 15].cpu().numpy()
|
||||||
|
#orgimg = show_results(orgimg, xywh, conf, landmarks, class_num)
|
||||||
|
|
||||||
|
#estimate eyebrow locations
|
||||||
|
landmarks_eyebrows = self.y5_calc_eyebrows(landmarks)
|
||||||
|
newimg, xyxy = self.y5_show_results(orgimg, xywh, conf, landmarks, class_num, landmarks_eyebrows)
|
||||||
|
|
||||||
|
landmarks_all = landmarks + landmarks_eyebrows + xyxy
|
||||||
|
shrunk = out_img[ xyxy[1]:xyxy[3], xyxy[0]:xyxy[2], 0:3 ]
|
||||||
|
if just_the_face:
|
||||||
|
points = xyxy
|
||||||
|
cv2.imwrite("%s/yolo.jpg" %(self.outdir), newimg)
|
||||||
|
cv2.imwrite("/%s/shrunk.jpg" % (self.outdir),shrunk)
|
||||||
|
shrunk.tofile("/%s/shrunk.raw" % (self.outdir))
|
||||||
|
return landmarks_all
|
||||||
|
|
||||||
|
|
||||||
|
def y5_scale_coords_landmarks(self, img1_shape, coords, img0_shape, ratio_pad=None):
|
||||||
|
# Rescale coords (xyxy) from img1_shape to img0_shape
|
||||||
|
if ratio_pad is None: # calculate from img0_shape
|
||||||
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
||||||
|
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
||||||
|
else:
|
||||||
|
gain = ratio_pad[0][0]
|
||||||
|
pad = ratio_pad[1]
|
||||||
|
|
||||||
|
coords[:, [0, 2, 4, 6, 8]] -= pad[0] # x padding
|
||||||
|
coords[:, [1, 3, 5, 7, 9]] -= pad[1] # y padding
|
||||||
|
coords[:, :10] /= gain
|
||||||
|
#clip_coords(coords, img0_shape)
|
||||||
|
coords[:, 0].clamp_(0, img0_shape[1]) # x1
|
||||||
|
coords[:, 1].clamp_(0, img0_shape[0]) # y1
|
||||||
|
coords[:, 2].clamp_(0, img0_shape[1]) # x2
|
||||||
|
coords[:, 3].clamp_(0, img0_shape[0]) # y2
|
||||||
|
coords[:, 4].clamp_(0, img0_shape[1]) # x3
|
||||||
|
coords[:, 5].clamp_(0, img0_shape[0]) # y3
|
||||||
|
coords[:, 6].clamp_(0, img0_shape[1]) # x4
|
||||||
|
coords[:, 7].clamp_(0, img0_shape[0]) # y4
|
||||||
|
coords[:, 8].clamp_(0, img0_shape[1]) # x5
|
||||||
|
coords[:, 9].clamp_(0, img0_shape[0]) # y5
|
||||||
|
return coords
|
||||||
|
|
||||||
|
|
||||||
|
def y5_pixval(self,img,x,y):
|
||||||
|
# return the pixel value at the point
|
||||||
|
return numpy.average(img[x-1:x+1,y-1:y+1])
|
||||||
|
|
||||||
|
# Render green square and landmark dots on the original image, and return the image
|
||||||
|
def y5_show_results(self, img, xywh, conf, landmarks, class_num, landmarks_eyebrows):
|
||||||
|
h,w,c = img.shape
|
||||||
|
tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness
|
||||||
|
x1 = int(xywh[0] * w - 0.5 * xywh[2] * w)
|
||||||
|
y1 = int(xywh[1] * h - 0.5 * xywh[3] * h)
|
||||||
|
x2 = int(xywh[0] * w + 0.5 * xywh[2] * w)
|
||||||
|
y2 = int(xywh[1] * h + 0.5 * xywh[3] * h)
|
||||||
|
cv2.rectangle(img, (x1,y1), (x2, y2), (0,255,0), thickness=tl, lineType=cv2.LINE_AA)
|
||||||
|
|
||||||
|
clors = [(255,0,0),(0,255,0),(0,0,255),(255,255,0),(0,255,255)]
|
||||||
|
|
||||||
|
clors2 = [(155,10,10),(10,155,10)]
|
||||||
|
|
||||||
|
self.points = []
|
||||||
|
for i in range(5):
|
||||||
|
point_x = int(landmarks[2 * i] * w)
|
||||||
|
point_y = int(landmarks[2 * i + 1] * h)
|
||||||
|
self.points.append((point_x,point_y,self.pixval(img,point_x,point_y)))
|
||||||
|
cv2.circle(img, (point_x, point_y), tl+1, clors[i], -1)
|
||||||
|
|
||||||
|
for i in range(2):
|
||||||
|
point_x = int(landmarks_eyebrows[2 * i] * w)
|
||||||
|
point_y = int(landmarks_eyebrows[2 * i + 1] * h)
|
||||||
|
self.points.append((point_x,point_y,self.pixval(img,point_x,point_y)))
|
||||||
|
cv2.circle(img, (point_x, point_y), tl+1, clors2[i], -1)
|
||||||
|
|
||||||
|
tf = max(tl - 1, 1) # font thickness
|
||||||
|
label = str(conf)[:5]
|
||||||
|
cv2.putText(img, label, (x1, y1 - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
||||||
|
return img, [x1,y1,x2,y2]
|
||||||
|
|
||||||
|
|
||||||
|
# DO some maths to figure out eyebrow positions relative to the eyes
|
||||||
|
def y5_calc_eyebrows(self, landmarks):
|
||||||
|
landmarks_eyes = numpy.array(landmarks[0:4], dtype=numpy.float32)
|
||||||
|
|
||||||
|
difx_eye = landmarks_eyes[2] - landmarks_eyes[0]
|
||||||
|
ebx1 = landmarks_eyes[0] + (difx_eye/4)
|
||||||
|
ebx2 = landmarks_eyes[2] - (difx_eye/4)
|
||||||
|
|
||||||
|
dify_eye = 25*difx_eye/63
|
||||||
|
eby1 = landmarks_eyes[1] - dify_eye
|
||||||
|
eby2 = landmarks_eyes[3] - dify_eye
|
||||||
|
|
||||||
|
landmarks_eyebrows = numpy.array([ebx1, eby1, ebx2, eby2])
|
||||||
|
landmarks_eyebrows = landmarks_eyebrows.tolist()
|
||||||
|
#print('landmarks:', landmarks)
|
||||||
|
#print('eyes:', landmarks_eyes)
|
||||||
|
#print('eyebrows:', landmarks_eyebrows)
|
||||||
|
return landmarks_eyebrows
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# Deal with the incoming call parameters
|
||||||
|
servport = int(sys.argv[1])
|
||||||
|
imgdir = sys.argv[2]
|
||||||
|
outdir = sys.argv[3]
|
||||||
|
weightsfile = sys.argv[4]
|
||||||
|
|
||||||
|
# Initialise the webserver
|
||||||
|
s = yoloserv()
|
||||||
|
s.initialise()
|
||||||
|
#s.initialise(imgdir,outdir,weightsfile)
|
||||||
|
cherrypy.config.update({'server.socket_host': '0.0.0.0',
|
||||||
|
'server.socket_port': servport})
|
||||||
|
cherrypy.quickstart(s, '/')
|
||||||
|
|
||||||
492
src/yoloserv.py.bkp
Normal file
492
src/yoloserv.py.bkp
Normal file
@ -0,0 +1,492 @@
|
|||||||
|
# Pre-reqs: tqdm pandas seaborn thop
|
||||||
|
import cherrypy
|
||||||
|
|
||||||
|
import time
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import json
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
# General image processing
|
||||||
|
import cv2
|
||||||
|
import torch
|
||||||
|
import torch.backends.cudnn as cudnn
|
||||||
|
from numpy import random
|
||||||
|
import copy
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
# Specific YOLO package directories (check you PYTHONPATH)
|
||||||
|
from models.experimental import attempt_load
|
||||||
|
from utils.datasets import letterbox
|
||||||
|
from utils.general import check_img_size, non_max_suppression_face, scale_coords, xyxy2xywh
|
||||||
|
from utils.torch_utils import time_synchronized
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class yoloserv(object):
|
||||||
|
|
||||||
|
yolo = None
|
||||||
|
device = None
|
||||||
|
DEVICE = "cpu"
|
||||||
|
imgdir = None
|
||||||
|
outdir = None
|
||||||
|
face_detector = None
|
||||||
|
palm_detector = None
|
||||||
|
face_matcher = None
|
||||||
|
palm_matcher = None
|
||||||
|
ir_camera = None
|
||||||
|
|
||||||
|
points = []
|
||||||
|
|
||||||
|
|
||||||
|
# Nature of init depends on the required algotithms listed in /etc/ukdi.conf
|
||||||
|
# eg :: "yolo_devices": "detect_face,facematch"
|
||||||
|
# detect_face - - fnd the most significant face in a crowd (works for IR)
|
||||||
|
# paravision - - proprietary face matching (high quality)
|
||||||
|
# facematch - - open source face matching (decent quality)
|
||||||
|
# realsense - - intel realsense camera (unstable at best)
|
||||||
|
# seek - - seek IR camera
|
||||||
|
# palmvein - - palm vein detection
|
||||||
|
def initialise(self):
|
||||||
|
with open("/etc/ukdi.json","r") as f:
|
||||||
|
self.conf = json.loads(f.read())
|
||||||
|
self.device_list = self.conf["yolo_devices"].split(",")
|
||||||
|
self.imgdir = self.conf("yolo_indir")
|
||||||
|
self.outdir = self.conf("yolo_outdir")
|
||||||
|
if "detect_face" in self.device_list and self.conf["emulate_facematch"]==0:
|
||||||
|
self.init_detect_face()
|
||||||
|
if "paravision" in self.device_list and self.conf["emulate_facematch"]==0:
|
||||||
|
self.face_detector = self.init_paravision()
|
||||||
|
if "facematch" in self.device_list and self.conf["emulate_facematch"]==0:
|
||||||
|
self.face_detector = self.init_facematch()
|
||||||
|
if "realsense" in self.device_list:
|
||||||
|
self.face_detector = self.init_realsense()
|
||||||
|
if "seek" in self.device_list:
|
||||||
|
self.ir_camera() = self.seek_init()
|
||||||
|
if "flir" in self.device_list:
|
||||||
|
self.ir_camera() = self.flir_init()
|
||||||
|
if "palmvein" in self.device_list:
|
||||||
|
self.palm_detector = selt.init_palmvein()
|
||||||
|
if "fjpalmvein" in self.device_list:
|
||||||
|
self.palm_detector = selt.init_jvpalmvein()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
dev svc_detect_face(self,imfile):
|
||||||
|
self.face_detector.detect(imfile)
|
||||||
|
|
||||||
|
dev svc_match_face(self,imfile1,imfile2):
|
||||||
|
return self.face_d.detect(imfile1,imfile2)
|
||||||
|
|
||||||
|
dev svc_detect_face(self,imfile):
|
||||||
|
return self.face_detector.detect(imfile)
|
||||||
|
|
||||||
|
dev svc_detect_face(self,imfile):
|
||||||
|
return self.face_detector.detect(imfile)
|
||||||
|
|
||||||
|
|
||||||
|
##### ###### ##### ###### #### #####
|
||||||
|
# # # # # # # #
|
||||||
|
# # ##### # ##### # #
|
||||||
|
# # # # # # #
|
||||||
|
# # # # # # # #
|
||||||
|
##### ###### # ###### #### #
|
||||||
|
|
||||||
|
|
||||||
|
def fm_init(self):
|
||||||
|
print("@@@ initialising facematch")
|
||||||
|
try:
|
||||||
|
self.sdk = SDK(engine=Engine.OPENVINO)
|
||||||
|
except ParavisionException:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def fm_load(self, dev1, dev2, id_image_filepath, photo_image_filepath):
|
||||||
|
self.dev1 = dev1
|
||||||
|
self.dev2 = dev2
|
||||||
|
try:
|
||||||
|
# Load images
|
||||||
|
self.id_image = load_image(id_image_filepath)
|
||||||
|
self.photo_image = load_image(photo_image_filepath)
|
||||||
|
print("++++++++++++++++ ",self.id_image)
|
||||||
|
return True
|
||||||
|
except:
|
||||||
|
return None
|
||||||
|
|
||||||
|
def fm_get_faces(self):
|
||||||
|
try:
|
||||||
|
# Get all faces from images with qualities, landmarks, and embeddings
|
||||||
|
self.inference_result = self.sdk.get_faces([self.id_image, self.photo_image], qualities=True, landmarks=True, embeddings=True)
|
||||||
|
self.image_inference_result = self.inference_result.image_inferences
|
||||||
|
if len(self.image_inference_result)==0:
|
||||||
|
return "no inferences found"
|
||||||
|
|
||||||
|
# Get most prominent face
|
||||||
|
self.id_face = self.image_inference_result[0].most_prominent_face_index()
|
||||||
|
self.photo_face = self.image_inference_result[1].most_prominent_face_index()
|
||||||
|
if self.id_face<0:
|
||||||
|
return "no id face found"
|
||||||
|
if self.photo_face<0:
|
||||||
|
return "no live face found"
|
||||||
|
|
||||||
|
# Get numerical representation of faces (required for face match)
|
||||||
|
if (len(self.image_inference_result)<2):
|
||||||
|
return "ID or human face could not be recognised"
|
||||||
|
self.id_emb = self.image_inference_result[0].faces[self.id_face].embedding
|
||||||
|
self.photo_emb = self.image_inference_result[1].faces[self.photo_face].embedding
|
||||||
|
|
||||||
|
except Exception as ex:
|
||||||
|
return "image processing exception "+str(ex)
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
# return " id=%d photo=%d result=%d " % (self.id_face, self.photo_face, len(self.image_inference_result))
|
||||||
|
|
||||||
|
|
||||||
|
def fm_compute_scores(self):
|
||||||
|
try:
|
||||||
|
# Get image quality scores (how 'good' a face is)
|
||||||
|
self.id_qual = self.image_inference_result[0].faces[self.id_face].quality
|
||||||
|
self.photo_qual = self.image_inference_result[1].faces[self.photo_face].quality
|
||||||
|
|
||||||
|
self.id_qual = round(self.id_qual, 3)
|
||||||
|
self.photo_qual = round(self.photo_qual, 3)
|
||||||
|
|
||||||
|
# Get face match score
|
||||||
|
self.match_score = self.sdk.get_match_score(self.id_emb, self.photo_emb)
|
||||||
|
|
||||||
|
# Create .json
|
||||||
|
self.face_match_json = {"device1":self.dev1,
|
||||||
|
"device2":self.dev2,
|
||||||
|
"passmark":500,
|
||||||
|
"device1_qual":self.id_qual,
|
||||||
|
"device2_qual":self.photo_qual,
|
||||||
|
"match_score":self.match_score}
|
||||||
|
|
||||||
|
#return json.dumps(self.face_match_json)
|
||||||
|
|
||||||
|
#print(self.face_match_json)
|
||||||
|
|
||||||
|
# Send to core
|
||||||
|
#url = "%s/notify/%s/%s" % (self.conf["core"], self.conf["identity"], face_match_json)
|
||||||
|
#url = url.replace(" ", "%20") # Remove spaces
|
||||||
|
#buf = []
|
||||||
|
#req = urllib.request.Request( url )
|
||||||
|
#with urllib.request.urlopen(req) as response:
|
||||||
|
#print(response.read())
|
||||||
|
|
||||||
|
except Exception as ex:
|
||||||
|
return str(ex)
|
||||||
|
|
||||||
|
|
||||||
|
def get_scores(self):
|
||||||
|
return json.dumps(self.face_match_json)
|
||||||
|
|
||||||
|
|
||||||
|
##### ## ##### ## # # # #### # #
|
||||||
|
# # # # # # # # # # # # ## #
|
||||||
|
# # # # # # # # # # # #### # # #
|
||||||
|
##### ###### ##### ###### # # # # # # #
|
||||||
|
# # # # # # # # # # # # # ##
|
||||||
|
# # # # # # # ## # #### # #
|
||||||
|
|
||||||
|
def pv_init(self):
|
||||||
|
print("@@@ initialising paravision")
|
||||||
|
from paravision.recognition import SDK, Engine
|
||||||
|
import paravision.recognition.utils as pru
|
||||||
|
from paravision.recognition.exceptions import ParavisionException
|
||||||
|
try:
|
||||||
|
self.sdk = SDK(engine=Engine.AUTO)
|
||||||
|
except ParavisionException:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def pv_read(self, imgpath):
|
||||||
|
if not os.path.exists(imgpath):
|
||||||
|
print("File not found ",imgpath)
|
||||||
|
return False
|
||||||
|
self.imgpath = imgpath
|
||||||
|
self.image = pru.load_image(imgpath)
|
||||||
|
print(self.image)
|
||||||
|
return True
|
||||||
|
|
||||||
|
def pv_process(self):
|
||||||
|
# Get all faces metadata
|
||||||
|
print("Finding faces in %s" %(self.imgpath))
|
||||||
|
faces = self.sdk.get_faces([self.image], qualities=True, landmarks=True, embeddings=True)
|
||||||
|
print("Getting metadata")
|
||||||
|
inferences = faces.image_inferences
|
||||||
|
print("Getting best face")
|
||||||
|
ix = inferences[0].most_prominent_face_index()
|
||||||
|
print("Getting a mathematical mode of that best face")
|
||||||
|
self.model = inferences[0].faces[ix].embedding
|
||||||
|
print("Getting image quality scores..")
|
||||||
|
self.score = round(1000*inferences[0].faces[ix].quality)
|
||||||
|
print("Score was %d" %(self.score))
|
||||||
|
return self.score
|
||||||
|
|
||||||
|
def pv_compare(self,other):
|
||||||
|
# Get face match score
|
||||||
|
return self.sdk.get_match_score(self.model, other.model)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
###### ## #### ###### # # ##### #### # #
|
||||||
|
# # # # # # ## ## # # # # #
|
||||||
|
##### # # # ##### # ## # # # ######
|
||||||
|
# ###### # # # # # # # #
|
||||||
|
# # # # # # # # # # # # #
|
||||||
|
# # # #### ###### # # # #### # #
|
||||||
|
|
||||||
|
def init_facematch(self):
|
||||||
|
print("@@@ initialising realsense")
|
||||||
|
import pyrealsense2 as rs
|
||||||
|
|
||||||
|
|
||||||
|
##### ###### ## # #### ###### # # ####
|
||||||
|
# # # # # # # # ## # #
|
||||||
|
# # ##### # # # #### ##### # # # ####
|
||||||
|
##### # ###### # # # # # # #
|
||||||
|
# # # # # # # # # # ## # #
|
||||||
|
# # ###### # # ###### #### ###### # # ####
|
||||||
|
|
||||||
|
def init_realsense(self):
|
||||||
|
print("@@@ initialising realsense")
|
||||||
|
import pyrealsense2 as rs
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#### ##### ###### # # #### # #
|
||||||
|
# # # # # ## # # # # #
|
||||||
|
# # # # ##### # # # # # #
|
||||||
|
# # ##### # # # # # # #
|
||||||
|
# # # # # ## # # # #
|
||||||
|
#### # ###### # # #### ##
|
||||||
|
|
||||||
|
def init_opencv(self):
|
||||||
|
print("@@@ initialising opencv")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#######
|
||||||
|
# # #### # #### # # #
|
||||||
|
# # # # # # # # # #
|
||||||
|
# # # # # # # # #####
|
||||||
|
# # # # # # # # #
|
||||||
|
# # # # # # # # # #
|
||||||
|
# #### ###### #### ## #####
|
||||||
|
|
||||||
|
# Set up the model and compute device (takes a while, hence this being a server)
|
||||||
|
# Example weightsfile: runs/train/exp/weights/yolov5m6_face.pt
|
||||||
|
def v5_init(self, imgdir, outdir, weightsfile):
|
||||||
|
print("@@@ initialising yolov5")
|
||||||
|
self.weightsfile = weightsfile
|
||||||
|
self.imgdir = imgdir
|
||||||
|
self.outdir = outdir
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
self.DEVICE = "cuda"
|
||||||
|
print("Setting up the %s device..." % (self.DEVICE))
|
||||||
|
self.device = torch.device(self.DEVICE)
|
||||||
|
print("Setting up the yolo class...")
|
||||||
|
# Returns a processor loaded with the weights and hook to the compute device
|
||||||
|
self.yolo = attempt_load(self.weightsfile, map_location=self.DEVICE) # load FP32 model
|
||||||
|
|
||||||
|
|
||||||
|
# This does all the heavy lifting. Just give it fully qualified file names for input and output images
|
||||||
|
@cherrypy.expose
|
||||||
|
def y5_process(self, imgfile):
|
||||||
|
# Get landmarks for the enarest face
|
||||||
|
l = self.y5_detect_nearest("%s/%s" % (self.imgdir, imgfile))
|
||||||
|
S = json.dumps(self.points)
|
||||||
|
return S
|
||||||
|
#left eye, right eye, nose, left mouth, right mouth, left inner eyebrow, right inner eyebrow (X, Y)
|
||||||
|
#return('{ "el":[%f,%f], "er":[%f,%f], "nn":[%f,%f], "ml":[%f,%f], "mr":[%f,%f], "il":[%f,%f], "ir":[%f,%f], "xyxy":[%d,%d,%d,%d] }'\
|
||||||
|
# % ( l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8], l[9], l[10], l[11], l[12], l[13], l[14], l[15], l[16], l[17] ))
|
||||||
|
#print("Landmarks:", landmarks_all)
|
||||||
|
|
||||||
|
|
||||||
|
# Detect the most significant (biggest, most central) face in the scene.
|
||||||
|
# This method is kind of ugly and does everything at once. Refactor?
|
||||||
|
def y5_detect_nearest(self, imgfile, just_the_face=False):
|
||||||
|
print("Detecting ",imgfile)
|
||||||
|
# Set some config and load the image
|
||||||
|
img_size = 320
|
||||||
|
conf_thres = 0.3
|
||||||
|
iou_thres = 0.5
|
||||||
|
|
||||||
|
# Load the image and make some copies
|
||||||
|
orgimg = cv2.imread(imgfile) # BGR
|
||||||
|
img0 = copy.deepcopy(orgimg)
|
||||||
|
out_img = copy.deepcopy(orgimg)
|
||||||
|
assert orgimg is not None, 'Image Not Found %s' % (imgfile)
|
||||||
|
h0, w0 = orgimg.shape[:2] # orig hw
|
||||||
|
|
||||||
|
# reformat and resize the image
|
||||||
|
r = img_size / max(h0, w0)
|
||||||
|
if r != 1: # always resize down, only resize up if training with augmentation
|
||||||
|
interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR
|
||||||
|
img0 = cv2.resize(img0, (int(w0 * r), int(h0 * r)), interpolation=interp)
|
||||||
|
imgsz = check_img_size(img_size, s=self.yolo.stride.max()) # check img_size
|
||||||
|
img = letterbox(img0, new_shape=imgsz)[0]
|
||||||
|
img = img[:, :, ::-1].transpose(2, 0, 1).copy() # BGR to RGB, to 3x416x416
|
||||||
|
|
||||||
|
# Convert the image to a torch image (tensor) values 0->1
|
||||||
|
img = torch.from_numpy(img).to(self.device)
|
||||||
|
img = img.float() # uint8 to fp16/32
|
||||||
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||||||
|
if img.ndimension() == 3:
|
||||||
|
img = img.unsqueeze(0)
|
||||||
|
#print(img)
|
||||||
|
|
||||||
|
# Find all faces
|
||||||
|
# This fails on some versions of yolo. If it does:
|
||||||
|
# sudo vi `locate upsampling.py`
|
||||||
|
# COmment out "recompute_scale_factor=self.recompute_scale_factor)" at about line 157
|
||||||
|
all_faces = self.yolo(img)
|
||||||
|
face0 = all_faces[0]
|
||||||
|
|
||||||
|
# Apply NMS
|
||||||
|
face = non_max_suppression_face(face0, conf_thres, iou_thres)
|
||||||
|
|
||||||
|
print('img.shape: ', img.shape)
|
||||||
|
print('orgimg.shape: ', orgimg.shape)
|
||||||
|
|
||||||
|
landmarks = []
|
||||||
|
landmarks_eyebrows = []
|
||||||
|
xyxy = []
|
||||||
|
# Process detections
|
||||||
|
for i, det in enumerate(face): # detections per image
|
||||||
|
gn = torch.tensor(orgimg.shape)[[1, 0, 1, 0]].to(self.device) # normalization gain whwh
|
||||||
|
gn_lks = torch.tensor(orgimg.shape)[[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]].to(self.device) # normalization gain landmarks
|
||||||
|
if len(det):
|
||||||
|
# Rescale boxes from img_size to im0 size
|
||||||
|
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], orgimg.shape).round()
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
for c in det[:, -1].unique():
|
||||||
|
n = (det[:, -1] == c).sum() # detections per class
|
||||||
|
|
||||||
|
det[:, 5:15] = self.y5_scale_coords_landmarks(img.shape[2:], det[:, 5:15], orgimg.shape).round()
|
||||||
|
|
||||||
|
for j in range(det.size()[0]):
|
||||||
|
xywh = (xyxy2xywh(det[j, :4].view(1, 4)) / gn).view(-1).tolist()
|
||||||
|
conf = det[j, 4].cpu().numpy()
|
||||||
|
landmarks = (det[j, 5:15].view(1, 10) / gn_lks).view(-1).tolist()
|
||||||
|
class_num = det[j, 15].cpu().numpy()
|
||||||
|
#orgimg = show_results(orgimg, xywh, conf, landmarks, class_num)
|
||||||
|
|
||||||
|
#estimate eyebrow locations
|
||||||
|
landmarks_eyebrows = self.y5_calc_eyebrows(landmarks)
|
||||||
|
newimg, xyxy = self.y5_show_results(orgimg, xywh, conf, landmarks, class_num, landmarks_eyebrows)
|
||||||
|
|
||||||
|
landmarks_all = landmarks + landmarks_eyebrows + xyxy
|
||||||
|
shrunk = out_img[ xyxy[1]:xyxy[3], xyxy[0]:xyxy[2], 0:3 ]
|
||||||
|
if just_the_face:
|
||||||
|
points = xyxy
|
||||||
|
cv2.imwrite("%s/yolo.jpg" %(self.outdir), newimg)
|
||||||
|
cv2.imwrite("/%s/shrunk.jpg" % (self.outdir),shrunk)
|
||||||
|
shrunk.tofile("/%s/shrunk.raw" % (self.outdir))
|
||||||
|
return landmarks_all
|
||||||
|
|
||||||
|
|
||||||
|
def y5_scale_coords_landmarks(self, img1_shape, coords, img0_shape, ratio_pad=None):
|
||||||
|
# Rescale coords (xyxy) from img1_shape to img0_shape
|
||||||
|
if ratio_pad is None: # calculate from img0_shape
|
||||||
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
||||||
|
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
||||||
|
else:
|
||||||
|
gain = ratio_pad[0][0]
|
||||||
|
pad = ratio_pad[1]
|
||||||
|
|
||||||
|
coords[:, [0, 2, 4, 6, 8]] -= pad[0] # x padding
|
||||||
|
coords[:, [1, 3, 5, 7, 9]] -= pad[1] # y padding
|
||||||
|
coords[:, :10] /= gain
|
||||||
|
#clip_coords(coords, img0_shape)
|
||||||
|
coords[:, 0].clamp_(0, img0_shape[1]) # x1
|
||||||
|
coords[:, 1].clamp_(0, img0_shape[0]) # y1
|
||||||
|
coords[:, 2].clamp_(0, img0_shape[1]) # x2
|
||||||
|
coords[:, 3].clamp_(0, img0_shape[0]) # y2
|
||||||
|
coords[:, 4].clamp_(0, img0_shape[1]) # x3
|
||||||
|
coords[:, 5].clamp_(0, img0_shape[0]) # y3
|
||||||
|
coords[:, 6].clamp_(0, img0_shape[1]) # x4
|
||||||
|
coords[:, 7].clamp_(0, img0_shape[0]) # y4
|
||||||
|
coords[:, 8].clamp_(0, img0_shape[1]) # x5
|
||||||
|
coords[:, 9].clamp_(0, img0_shape[0]) # y5
|
||||||
|
return coords
|
||||||
|
|
||||||
|
|
||||||
|
def y5_pixval(self,img,x,y):
|
||||||
|
# return the pixel value at the point
|
||||||
|
return numpy.average(img[x-1:x+1,y-1:y+1])
|
||||||
|
|
||||||
|
# Render green square and landmark dots on the original image, and return the image
|
||||||
|
def y5_show_results(self, img, xywh, conf, landmarks, class_num, landmarks_eyebrows):
|
||||||
|
h,w,c = img.shape
|
||||||
|
tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness
|
||||||
|
x1 = int(xywh[0] * w - 0.5 * xywh[2] * w)
|
||||||
|
y1 = int(xywh[1] * h - 0.5 * xywh[3] * h)
|
||||||
|
x2 = int(xywh[0] * w + 0.5 * xywh[2] * w)
|
||||||
|
y2 = int(xywh[1] * h + 0.5 * xywh[3] * h)
|
||||||
|
cv2.rectangle(img, (x1,y1), (x2, y2), (0,255,0), thickness=tl, lineType=cv2.LINE_AA)
|
||||||
|
|
||||||
|
clors = [(255,0,0),(0,255,0),(0,0,255),(255,255,0),(0,255,255)]
|
||||||
|
|
||||||
|
clors2 = [(155,10,10),(10,155,10)]
|
||||||
|
|
||||||
|
self.points = []
|
||||||
|
for i in range(5):
|
||||||
|
point_x = int(landmarks[2 * i] * w)
|
||||||
|
point_y = int(landmarks[2 * i + 1] * h)
|
||||||
|
self.points.append((point_x,point_y,self.pixval(img,point_x,point_y)))
|
||||||
|
cv2.circle(img, (point_x, point_y), tl+1, clors[i], -1)
|
||||||
|
|
||||||
|
for i in range(2):
|
||||||
|
point_x = int(landmarks_eyebrows[2 * i] * w)
|
||||||
|
point_y = int(landmarks_eyebrows[2 * i + 1] * h)
|
||||||
|
self.points.append((point_x,point_y,self.pixval(img,point_x,point_y)))
|
||||||
|
cv2.circle(img, (point_x, point_y), tl+1, clors2[i], -1)
|
||||||
|
|
||||||
|
tf = max(tl - 1, 1) # font thickness
|
||||||
|
label = str(conf)[:5]
|
||||||
|
cv2.putText(img, label, (x1, y1 - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
||||||
|
return img, [x1,y1,x2,y2]
|
||||||
|
|
||||||
|
|
||||||
|
# DO some maths to figure out eyebrow positions relative to the eyes
|
||||||
|
def y5_calc_eyebrows(self, landmarks):
|
||||||
|
landmarks_eyes = numpy.array(landmarks[0:4], dtype=numpy.float32)
|
||||||
|
|
||||||
|
difx_eye = landmarks_eyes[2] - landmarks_eyes[0]
|
||||||
|
ebx1 = landmarks_eyes[0] + (difx_eye/4)
|
||||||
|
ebx2 = landmarks_eyes[2] - (difx_eye/4)
|
||||||
|
|
||||||
|
dify_eye = 25*difx_eye/63
|
||||||
|
eby1 = landmarks_eyes[1] - dify_eye
|
||||||
|
eby2 = landmarks_eyes[3] - dify_eye
|
||||||
|
|
||||||
|
landmarks_eyebrows = numpy.array([ebx1, eby1, ebx2, eby2])
|
||||||
|
landmarks_eyebrows = landmarks_eyebrows.tolist()
|
||||||
|
#print('landmarks:', landmarks)
|
||||||
|
#print('eyes:', landmarks_eyes)
|
||||||
|
#print('eyebrows:', landmarks_eyebrows)
|
||||||
|
return landmarks_eyebrows
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# Deal with the incoming call parameters
|
||||||
|
servport = int(sys.argv[1])
|
||||||
|
imgdir = sys.argv[2]
|
||||||
|
outdir = sys.argv[3]
|
||||||
|
weightsfile = sys.argv[4]
|
||||||
|
|
||||||
|
# Initialise the webserver
|
||||||
|
s = yoloserv()
|
||||||
|
s.initialise()
|
||||||
|
#s.initialise(imgdir,outdir,weightsfile)
|
||||||
|
cherrypy.config.update({'server.socket_host': '0.0.0.0',
|
||||||
|
'server.socket_port': servport})
|
||||||
|
cherrypy.quickstart(s, '/')
|
||||||
|
|
||||||
1
var/yoloserv.pid
Normal file
1
var/yoloserv.pid
Normal file
@ -0,0 +1 @@
|
|||||||
|
2706049
|
||||||
674
yolov5-face_Jan1/LICENSE
Normal file
674
yolov5-face_Jan1/LICENSE
Normal file
@ -0,0 +1,674 @@
|
|||||||
|
GNU GENERAL PUBLIC LICENSE
|
||||||
|
Version 3, 29 June 2007
|
||||||
|
|
||||||
|
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||||
|
Everyone is permitted to copy and distribute verbatim copies
|
||||||
|
of this license document, but changing it is not allowed.
|
||||||
|
|
||||||
|
Preamble
|
||||||
|
|
||||||
|
The GNU General Public License is a free, copyleft license for
|
||||||
|
software and other kinds of works.
|
||||||
|
|
||||||
|
The licenses for most software and other practical works are designed
|
||||||
|
to take away your freedom to share and change the works. By contrast,
|
||||||
|
the GNU General Public License is intended to guarantee your freedom to
|
||||||
|
share and change all versions of a program--to make sure it remains free
|
||||||
|
software for all its users. We, the Free Software Foundation, use the
|
||||||
|
GNU General Public License for most of our software; it applies also to
|
||||||
|
any other work released this way by its authors. You can apply it to
|
||||||
|
your programs, too.
|
||||||
|
|
||||||
|
When we speak of free software, we are referring to freedom, not
|
||||||
|
price. Our General Public Licenses are designed to make sure that you
|
||||||
|
have the freedom to distribute copies of free software (and charge for
|
||||||
|
them if you wish), that you receive source code or can get it if you
|
||||||
|
want it, that you can change the software or use pieces of it in new
|
||||||
|
free programs, and that you know you can do these things.
|
||||||
|
|
||||||
|
To protect your rights, we need to prevent others from denying you
|
||||||
|
these rights or asking you to surrender the rights. Therefore, you have
|
||||||
|
certain responsibilities if you distribute copies of the software, or if
|
||||||
|
you modify it: responsibilities to respect the freedom of others.
|
||||||
|
|
||||||
|
For example, if you distribute copies of such a program, whether
|
||||||
|
gratis or for a fee, you must pass on to the recipients the same
|
||||||
|
freedoms that you received. You must make sure that they, too, receive
|
||||||
|
or can get the source code. And you must show them these terms so they
|
||||||
|
know their rights.
|
||||||
|
|
||||||
|
Developers that use the GNU GPL protect your rights with two steps:
|
||||||
|
(1) assert copyright on the software, and (2) offer you this License
|
||||||
|
giving you legal permission to copy, distribute and/or modify it.
|
||||||
|
|
||||||
|
For the developers' and authors' protection, the GPL clearly explains
|
||||||
|
that there is no warranty for this free software. For both users' and
|
||||||
|
authors' sake, the GPL requires that modified versions be marked as
|
||||||
|
changed, so that their problems will not be attributed erroneously to
|
||||||
|
authors of previous versions.
|
||||||
|
|
||||||
|
Some devices are designed to deny users access to install or run
|
||||||
|
modified versions of the software inside them, although the manufacturer
|
||||||
|
can do so. This is fundamentally incompatible with the aim of
|
||||||
|
protecting users' freedom to change the software. The systematic
|
||||||
|
pattern of such abuse occurs in the area of products for individuals to
|
||||||
|
use, which is precisely where it is most unacceptable. Therefore, we
|
||||||
|
have designed this version of the GPL to prohibit the practice for those
|
||||||
|
products. If such problems arise substantially in other domains, we
|
||||||
|
stand ready to extend this provision to those domains in future versions
|
||||||
|
of the GPL, as needed to protect the freedom of users.
|
||||||
|
|
||||||
|
Finally, every program is threatened constantly by software patents.
|
||||||
|
States should not allow patents to restrict development and use of
|
||||||
|
software on general-purpose computers, but in those that do, we wish to
|
||||||
|
avoid the special danger that patents applied to a free program could
|
||||||
|
make it effectively proprietary. To prevent this, the GPL assures that
|
||||||
|
patents cannot be used to render the program non-free.
|
||||||
|
|
||||||
|
The precise terms and conditions for copying, distribution and
|
||||||
|
modification follow.
|
||||||
|
|
||||||
|
TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
0. Definitions.
|
||||||
|
|
||||||
|
"This License" refers to version 3 of the GNU General Public License.
|
||||||
|
|
||||||
|
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||||
|
works, such as semiconductor masks.
|
||||||
|
|
||||||
|
"The Program" refers to any copyrightable work licensed under this
|
||||||
|
License. Each licensee is addressed as "you". "Licensees" and
|
||||||
|
"recipients" may be individuals or organizations.
|
||||||
|
|
||||||
|
To "modify" a work means to copy from or adapt all or part of the work
|
||||||
|
in a fashion requiring copyright permission, other than the making of an
|
||||||
|
exact copy. The resulting work is called a "modified version" of the
|
||||||
|
earlier work or a work "based on" the earlier work.
|
||||||
|
|
||||||
|
A "covered work" means either the unmodified Program or a work based
|
||||||
|
on the Program.
|
||||||
|
|
||||||
|
To "propagate" a work means to do anything with it that, without
|
||||||
|
permission, would make you directly or secondarily liable for
|
||||||
|
infringement under applicable copyright law, except executing it on a
|
||||||
|
computer or modifying a private copy. Propagation includes copying,
|
||||||
|
distribution (with or without modification), making available to the
|
||||||
|
public, and in some countries other activities as well.
|
||||||
|
|
||||||
|
To "convey" a work means any kind of propagation that enables other
|
||||||
|
parties to make or receive copies. Mere interaction with a user through
|
||||||
|
a computer network, with no transfer of a copy, is not conveying.
|
||||||
|
|
||||||
|
An interactive user interface displays "Appropriate Legal Notices"
|
||||||
|
to the extent that it includes a convenient and prominently visible
|
||||||
|
feature that (1) displays an appropriate copyright notice, and (2)
|
||||||
|
tells the user that there is no warranty for the work (except to the
|
||||||
|
extent that warranties are provided), that licensees may convey the
|
||||||
|
work under this License, and how to view a copy of this License. If
|
||||||
|
the interface presents a list of user commands or options, such as a
|
||||||
|
menu, a prominent item in the list meets this criterion.
|
||||||
|
|
||||||
|
1. Source Code.
|
||||||
|
|
||||||
|
The "source code" for a work means the preferred form of the work
|
||||||
|
for making modifications to it. "Object code" means any non-source
|
||||||
|
form of a work.
|
||||||
|
|
||||||
|
A "Standard Interface" means an interface that either is an official
|
||||||
|
standard defined by a recognized standards body, or, in the case of
|
||||||
|
interfaces specified for a particular programming language, one that
|
||||||
|
is widely used among developers working in that language.
|
||||||
|
|
||||||
|
The "System Libraries" of an executable work include anything, other
|
||||||
|
than the work as a whole, that (a) is included in the normal form of
|
||||||
|
packaging a Major Component, but which is not part of that Major
|
||||||
|
Component, and (b) serves only to enable use of the work with that
|
||||||
|
Major Component, or to implement a Standard Interface for which an
|
||||||
|
implementation is available to the public in source code form. A
|
||||||
|
"Major Component", in this context, means a major essential component
|
||||||
|
(kernel, window system, and so on) of the specific operating system
|
||||||
|
(if any) on which the executable work runs, or a compiler used to
|
||||||
|
produce the work, or an object code interpreter used to run it.
|
||||||
|
|
||||||
|
The "Corresponding Source" for a work in object code form means all
|
||||||
|
the source code needed to generate, install, and (for an executable
|
||||||
|
work) run the object code and to modify the work, including scripts to
|
||||||
|
control those activities. However, it does not include the work's
|
||||||
|
System Libraries, or general-purpose tools or generally available free
|
||||||
|
programs which are used unmodified in performing those activities but
|
||||||
|
which are not part of the work. For example, Corresponding Source
|
||||||
|
includes interface definition files associated with source files for
|
||||||
|
the work, and the source code for shared libraries and dynamically
|
||||||
|
linked subprograms that the work is specifically designed to require,
|
||||||
|
such as by intimate data communication or control flow between those
|
||||||
|
subprograms and other parts of the work.
|
||||||
|
|
||||||
|
The Corresponding Source need not include anything that users
|
||||||
|
can regenerate automatically from other parts of the Corresponding
|
||||||
|
Source.
|
||||||
|
|
||||||
|
The Corresponding Source for a work in source code form is that
|
||||||
|
same work.
|
||||||
|
|
||||||
|
2. Basic Permissions.
|
||||||
|
|
||||||
|
All rights granted under this License are granted for the term of
|
||||||
|
copyright on the Program, and are irrevocable provided the stated
|
||||||
|
conditions are met. This License explicitly affirms your unlimited
|
||||||
|
permission to run the unmodified Program. The output from running a
|
||||||
|
covered work is covered by this License only if the output, given its
|
||||||
|
content, constitutes a covered work. This License acknowledges your
|
||||||
|
rights of fair use or other equivalent, as provided by copyright law.
|
||||||
|
|
||||||
|
You may make, run and propagate covered works that you do not
|
||||||
|
convey, without conditions so long as your license otherwise remains
|
||||||
|
in force. You may convey covered works to others for the sole purpose
|
||||||
|
of having them make modifications exclusively for you, or provide you
|
||||||
|
with facilities for running those works, provided that you comply with
|
||||||
|
the terms of this License in conveying all material for which you do
|
||||||
|
not control copyright. Those thus making or running the covered works
|
||||||
|
for you must do so exclusively on your behalf, under your direction
|
||||||
|
and control, on terms that prohibit them from making any copies of
|
||||||
|
your copyrighted material outside their relationship with you.
|
||||||
|
|
||||||
|
Conveying under any other circumstances is permitted solely under
|
||||||
|
the conditions stated below. Sublicensing is not allowed; section 10
|
||||||
|
makes it unnecessary.
|
||||||
|
|
||||||
|
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||||
|
|
||||||
|
No covered work shall be deemed part of an effective technological
|
||||||
|
measure under any applicable law fulfilling obligations under article
|
||||||
|
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||||
|
similar laws prohibiting or restricting circumvention of such
|
||||||
|
measures.
|
||||||
|
|
||||||
|
When you convey a covered work, you waive any legal power to forbid
|
||||||
|
circumvention of technological measures to the extent such circumvention
|
||||||
|
is effected by exercising rights under this License with respect to
|
||||||
|
the covered work, and you disclaim any intention to limit operation or
|
||||||
|
modification of the work as a means of enforcing, against the work's
|
||||||
|
users, your or third parties' legal rights to forbid circumvention of
|
||||||
|
technological measures.
|
||||||
|
|
||||||
|
4. Conveying Verbatim Copies.
|
||||||
|
|
||||||
|
You may convey verbatim copies of the Program's source code as you
|
||||||
|
receive it, in any medium, provided that you conspicuously and
|
||||||
|
appropriately publish on each copy an appropriate copyright notice;
|
||||||
|
keep intact all notices stating that this License and any
|
||||||
|
non-permissive terms added in accord with section 7 apply to the code;
|
||||||
|
keep intact all notices of the absence of any warranty; and give all
|
||||||
|
recipients a copy of this License along with the Program.
|
||||||
|
|
||||||
|
You may charge any price or no price for each copy that you convey,
|
||||||
|
and you may offer support or warranty protection for a fee.
|
||||||
|
|
||||||
|
5. Conveying Modified Source Versions.
|
||||||
|
|
||||||
|
You may convey a work based on the Program, or the modifications to
|
||||||
|
produce it from the Program, in the form of source code under the
|
||||||
|
terms of section 4, provided that you also meet all of these conditions:
|
||||||
|
|
||||||
|
a) The work must carry prominent notices stating that you modified
|
||||||
|
it, and giving a relevant date.
|
||||||
|
|
||||||
|
b) The work must carry prominent notices stating that it is
|
||||||
|
released under this License and any conditions added under section
|
||||||
|
7. This requirement modifies the requirement in section 4 to
|
||||||
|
"keep intact all notices".
|
||||||
|
|
||||||
|
c) You must license the entire work, as a whole, under this
|
||||||
|
License to anyone who comes into possession of a copy. This
|
||||||
|
License will therefore apply, along with any applicable section 7
|
||||||
|
additional terms, to the whole of the work, and all its parts,
|
||||||
|
regardless of how they are packaged. This License gives no
|
||||||
|
permission to license the work in any other way, but it does not
|
||||||
|
invalidate such permission if you have separately received it.
|
||||||
|
|
||||||
|
d) If the work has interactive user interfaces, each must display
|
||||||
|
Appropriate Legal Notices; however, if the Program has interactive
|
||||||
|
interfaces that do not display Appropriate Legal Notices, your
|
||||||
|
work need not make them do so.
|
||||||
|
|
||||||
|
A compilation of a covered work with other separate and independent
|
||||||
|
works, which are not by their nature extensions of the covered work,
|
||||||
|
and which are not combined with it such as to form a larger program,
|
||||||
|
in or on a volume of a storage or distribution medium, is called an
|
||||||
|
"aggregate" if the compilation and its resulting copyright are not
|
||||||
|
used to limit the access or legal rights of the compilation's users
|
||||||
|
beyond what the individual works permit. Inclusion of a covered work
|
||||||
|
in an aggregate does not cause this License to apply to the other
|
||||||
|
parts of the aggregate.
|
||||||
|
|
||||||
|
6. Conveying Non-Source Forms.
|
||||||
|
|
||||||
|
You may convey a covered work in object code form under the terms
|
||||||
|
of sections 4 and 5, provided that you also convey the
|
||||||
|
machine-readable Corresponding Source under the terms of this License,
|
||||||
|
in one of these ways:
|
||||||
|
|
||||||
|
a) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by the
|
||||||
|
Corresponding Source fixed on a durable physical medium
|
||||||
|
customarily used for software interchange.
|
||||||
|
|
||||||
|
b) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by a
|
||||||
|
written offer, valid for at least three years and valid for as
|
||||||
|
long as you offer spare parts or customer support for that product
|
||||||
|
model, to give anyone who possesses the object code either (1) a
|
||||||
|
copy of the Corresponding Source for all the software in the
|
||||||
|
product that is covered by this License, on a durable physical
|
||||||
|
medium customarily used for software interchange, for a price no
|
||||||
|
more than your reasonable cost of physically performing this
|
||||||
|
conveying of source, or (2) access to copy the
|
||||||
|
Corresponding Source from a network server at no charge.
|
||||||
|
|
||||||
|
c) Convey individual copies of the object code with a copy of the
|
||||||
|
written offer to provide the Corresponding Source. This
|
||||||
|
alternative is allowed only occasionally and noncommercially, and
|
||||||
|
only if you received the object code with such an offer, in accord
|
||||||
|
with subsection 6b.
|
||||||
|
|
||||||
|
d) Convey the object code by offering access from a designated
|
||||||
|
place (gratis or for a charge), and offer equivalent access to the
|
||||||
|
Corresponding Source in the same way through the same place at no
|
||||||
|
further charge. You need not require recipients to copy the
|
||||||
|
Corresponding Source along with the object code. If the place to
|
||||||
|
copy the object code is a network server, the Corresponding Source
|
||||||
|
may be on a different server (operated by you or a third party)
|
||||||
|
that supports equivalent copying facilities, provided you maintain
|
||||||
|
clear directions next to the object code saying where to find the
|
||||||
|
Corresponding Source. Regardless of what server hosts the
|
||||||
|
Corresponding Source, you remain obligated to ensure that it is
|
||||||
|
available for as long as needed to satisfy these requirements.
|
||||||
|
|
||||||
|
e) Convey the object code using peer-to-peer transmission, provided
|
||||||
|
you inform other peers where the object code and Corresponding
|
||||||
|
Source of the work are being offered to the general public at no
|
||||||
|
charge under subsection 6d.
|
||||||
|
|
||||||
|
A separable portion of the object code, whose source code is excluded
|
||||||
|
from the Corresponding Source as a System Library, need not be
|
||||||
|
included in conveying the object code work.
|
||||||
|
|
||||||
|
A "User Product" is either (1) a "consumer product", which means any
|
||||||
|
tangible personal property which is normally used for personal, family,
|
||||||
|
or household purposes, or (2) anything designed or sold for incorporation
|
||||||
|
into a dwelling. In determining whether a product is a consumer product,
|
||||||
|
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||||
|
product received by a particular user, "normally used" refers to a
|
||||||
|
typical or common use of that class of product, regardless of the status
|
||||||
|
of the particular user or of the way in which the particular user
|
||||||
|
actually uses, or expects or is expected to use, the product. A product
|
||||||
|
is a consumer product regardless of whether the product has substantial
|
||||||
|
commercial, industrial or non-consumer uses, unless such uses represent
|
||||||
|
the only significant mode of use of the product.
|
||||||
|
|
||||||
|
"Installation Information" for a User Product means any methods,
|
||||||
|
procedures, authorization keys, or other information required to install
|
||||||
|
and execute modified versions of a covered work in that User Product from
|
||||||
|
a modified version of its Corresponding Source. The information must
|
||||||
|
suffice to ensure that the continued functioning of the modified object
|
||||||
|
code is in no case prevented or interfered with solely because
|
||||||
|
modification has been made.
|
||||||
|
|
||||||
|
If you convey an object code work under this section in, or with, or
|
||||||
|
specifically for use in, a User Product, and the conveying occurs as
|
||||||
|
part of a transaction in which the right of possession and use of the
|
||||||
|
User Product is transferred to the recipient in perpetuity or for a
|
||||||
|
fixed term (regardless of how the transaction is characterized), the
|
||||||
|
Corresponding Source conveyed under this section must be accompanied
|
||||||
|
by the Installation Information. But this requirement does not apply
|
||||||
|
if neither you nor any third party retains the ability to install
|
||||||
|
modified object code on the User Product (for example, the work has
|
||||||
|
been installed in ROM).
|
||||||
|
|
||||||
|
The requirement to provide Installation Information does not include a
|
||||||
|
requirement to continue to provide support service, warranty, or updates
|
||||||
|
for a work that has been modified or installed by the recipient, or for
|
||||||
|
the User Product in which it has been modified or installed. Access to a
|
||||||
|
network may be denied when the modification itself materially and
|
||||||
|
adversely affects the operation of the network or violates the rules and
|
||||||
|
protocols for communication across the network.
|
||||||
|
|
||||||
|
Corresponding Source conveyed, and Installation Information provided,
|
||||||
|
in accord with this section must be in a format that is publicly
|
||||||
|
documented (and with an implementation available to the public in
|
||||||
|
source code form), and must require no special password or key for
|
||||||
|
unpacking, reading or copying.
|
||||||
|
|
||||||
|
7. Additional Terms.
|
||||||
|
|
||||||
|
"Additional permissions" are terms that supplement the terms of this
|
||||||
|
License by making exceptions from one or more of its conditions.
|
||||||
|
Additional permissions that are applicable to the entire Program shall
|
||||||
|
be treated as though they were included in this License, to the extent
|
||||||
|
that they are valid under applicable law. If additional permissions
|
||||||
|
apply only to part of the Program, that part may be used separately
|
||||||
|
under those permissions, but the entire Program remains governed by
|
||||||
|
this License without regard to the additional permissions.
|
||||||
|
|
||||||
|
When you convey a copy of a covered work, you may at your option
|
||||||
|
remove any additional permissions from that copy, or from any part of
|
||||||
|
it. (Additional permissions may be written to require their own
|
||||||
|
removal in certain cases when you modify the work.) You may place
|
||||||
|
additional permissions on material, added by you to a covered work,
|
||||||
|
for which you have or can give appropriate copyright permission.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, for material you
|
||||||
|
add to a covered work, you may (if authorized by the copyright holders of
|
||||||
|
that material) supplement the terms of this License with terms:
|
||||||
|
|
||||||
|
a) Disclaiming warranty or limiting liability differently from the
|
||||||
|
terms of sections 15 and 16 of this License; or
|
||||||
|
|
||||||
|
b) Requiring preservation of specified reasonable legal notices or
|
||||||
|
author attributions in that material or in the Appropriate Legal
|
||||||
|
Notices displayed by works containing it; or
|
||||||
|
|
||||||
|
c) Prohibiting misrepresentation of the origin of that material, or
|
||||||
|
requiring that modified versions of such material be marked in
|
||||||
|
reasonable ways as different from the original version; or
|
||||||
|
|
||||||
|
d) Limiting the use for publicity purposes of names of licensors or
|
||||||
|
authors of the material; or
|
||||||
|
|
||||||
|
e) Declining to grant rights under trademark law for use of some
|
||||||
|
trade names, trademarks, or service marks; or
|
||||||
|
|
||||||
|
f) Requiring indemnification of licensors and authors of that
|
||||||
|
material by anyone who conveys the material (or modified versions of
|
||||||
|
it) with contractual assumptions of liability to the recipient, for
|
||||||
|
any liability that these contractual assumptions directly impose on
|
||||||
|
those licensors and authors.
|
||||||
|
|
||||||
|
All other non-permissive additional terms are considered "further
|
||||||
|
restrictions" within the meaning of section 10. If the Program as you
|
||||||
|
received it, or any part of it, contains a notice stating that it is
|
||||||
|
governed by this License along with a term that is a further
|
||||||
|
restriction, you may remove that term. If a license document contains
|
||||||
|
a further restriction but permits relicensing or conveying under this
|
||||||
|
License, you may add to a covered work material governed by the terms
|
||||||
|
of that license document, provided that the further restriction does
|
||||||
|
not survive such relicensing or conveying.
|
||||||
|
|
||||||
|
If you add terms to a covered work in accord with this section, you
|
||||||
|
must place, in the relevant source files, a statement of the
|
||||||
|
additional terms that apply to those files, or a notice indicating
|
||||||
|
where to find the applicable terms.
|
||||||
|
|
||||||
|
Additional terms, permissive or non-permissive, may be stated in the
|
||||||
|
form of a separately written license, or stated as exceptions;
|
||||||
|
the above requirements apply either way.
|
||||||
|
|
||||||
|
8. Termination.
|
||||||
|
|
||||||
|
You may not propagate or modify a covered work except as expressly
|
||||||
|
provided under this License. Any attempt otherwise to propagate or
|
||||||
|
modify it is void, and will automatically terminate your rights under
|
||||||
|
this License (including any patent licenses granted under the third
|
||||||
|
paragraph of section 11).
|
||||||
|
|
||||||
|
However, if you cease all violation of this License, then your
|
||||||
|
license from a particular copyright holder is reinstated (a)
|
||||||
|
provisionally, unless and until the copyright holder explicitly and
|
||||||
|
finally terminates your license, and (b) permanently, if the copyright
|
||||||
|
holder fails to notify you of the violation by some reasonable means
|
||||||
|
prior to 60 days after the cessation.
|
||||||
|
|
||||||
|
Moreover, your license from a particular copyright holder is
|
||||||
|
reinstated permanently if the copyright holder notifies you of the
|
||||||
|
violation by some reasonable means, this is the first time you have
|
||||||
|
received notice of violation of this License (for any work) from that
|
||||||
|
copyright holder, and you cure the violation prior to 30 days after
|
||||||
|
your receipt of the notice.
|
||||||
|
|
||||||
|
Termination of your rights under this section does not terminate the
|
||||||
|
licenses of parties who have received copies or rights from you under
|
||||||
|
this License. If your rights have been terminated and not permanently
|
||||||
|
reinstated, you do not qualify to receive new licenses for the same
|
||||||
|
material under section 10.
|
||||||
|
|
||||||
|
9. Acceptance Not Required for Having Copies.
|
||||||
|
|
||||||
|
You are not required to accept this License in order to receive or
|
||||||
|
run a copy of the Program. Ancillary propagation of a covered work
|
||||||
|
occurring solely as a consequence of using peer-to-peer transmission
|
||||||
|
to receive a copy likewise does not require acceptance. However,
|
||||||
|
nothing other than this License grants you permission to propagate or
|
||||||
|
modify any covered work. These actions infringe copyright if you do
|
||||||
|
not accept this License. Therefore, by modifying or propagating a
|
||||||
|
covered work, you indicate your acceptance of this License to do so.
|
||||||
|
|
||||||
|
10. Automatic Licensing of Downstream Recipients.
|
||||||
|
|
||||||
|
Each time you convey a covered work, the recipient automatically
|
||||||
|
receives a license from the original licensors, to run, modify and
|
||||||
|
propagate that work, subject to this License. You are not responsible
|
||||||
|
for enforcing compliance by third parties with this License.
|
||||||
|
|
||||||
|
An "entity transaction" is a transaction transferring control of an
|
||||||
|
organization, or substantially all assets of one, or subdividing an
|
||||||
|
organization, or merging organizations. If propagation of a covered
|
||||||
|
work results from an entity transaction, each party to that
|
||||||
|
transaction who receives a copy of the work also receives whatever
|
||||||
|
licenses to the work the party's predecessor in interest had or could
|
||||||
|
give under the previous paragraph, plus a right to possession of the
|
||||||
|
Corresponding Source of the work from the predecessor in interest, if
|
||||||
|
the predecessor has it or can get it with reasonable efforts.
|
||||||
|
|
||||||
|
You may not impose any further restrictions on the exercise of the
|
||||||
|
rights granted or affirmed under this License. For example, you may
|
||||||
|
not impose a license fee, royalty, or other charge for exercise of
|
||||||
|
rights granted under this License, and you may not initiate litigation
|
||||||
|
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||||
|
any patent claim is infringed by making, using, selling, offering for
|
||||||
|
sale, or importing the Program or any portion of it.
|
||||||
|
|
||||||
|
11. Patents.
|
||||||
|
|
||||||
|
A "contributor" is a copyright holder who authorizes use under this
|
||||||
|
License of the Program or a work on which the Program is based. The
|
||||||
|
work thus licensed is called the contributor's "contributor version".
|
||||||
|
|
||||||
|
A contributor's "essential patent claims" are all patent claims
|
||||||
|
owned or controlled by the contributor, whether already acquired or
|
||||||
|
hereafter acquired, that would be infringed by some manner, permitted
|
||||||
|
by this License, of making, using, or selling its contributor version,
|
||||||
|
but do not include claims that would be infringed only as a
|
||||||
|
consequence of further modification of the contributor version. For
|
||||||
|
purposes of this definition, "control" includes the right to grant
|
||||||
|
patent sublicenses in a manner consistent with the requirements of
|
||||||
|
this License.
|
||||||
|
|
||||||
|
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||||
|
patent license under the contributor's essential patent claims, to
|
||||||
|
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||||
|
propagate the contents of its contributor version.
|
||||||
|
|
||||||
|
In the following three paragraphs, a "patent license" is any express
|
||||||
|
agreement or commitment, however denominated, not to enforce a patent
|
||||||
|
(such as an express permission to practice a patent or covenant not to
|
||||||
|
sue for patent infringement). To "grant" such a patent license to a
|
||||||
|
party means to make such an agreement or commitment not to enforce a
|
||||||
|
patent against the party.
|
||||||
|
|
||||||
|
If you convey a covered work, knowingly relying on a patent license,
|
||||||
|
and the Corresponding Source of the work is not available for anyone
|
||||||
|
to copy, free of charge and under the terms of this License, through a
|
||||||
|
publicly available network server or other readily accessible means,
|
||||||
|
then you must either (1) cause the Corresponding Source to be so
|
||||||
|
available, or (2) arrange to deprive yourself of the benefit of the
|
||||||
|
patent license for this particular work, or (3) arrange, in a manner
|
||||||
|
consistent with the requirements of this License, to extend the patent
|
||||||
|
license to downstream recipients. "Knowingly relying" means you have
|
||||||
|
actual knowledge that, but for the patent license, your conveying the
|
||||||
|
covered work in a country, or your recipient's use of the covered work
|
||||||
|
in a country, would infringe one or more identifiable patents in that
|
||||||
|
country that you have reason to believe are valid.
|
||||||
|
|
||||||
|
If, pursuant to or in connection with a single transaction or
|
||||||
|
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||||
|
covered work, and grant a patent license to some of the parties
|
||||||
|
receiving the covered work authorizing them to use, propagate, modify
|
||||||
|
or convey a specific copy of the covered work, then the patent license
|
||||||
|
you grant is automatically extended to all recipients of the covered
|
||||||
|
work and works based on it.
|
||||||
|
|
||||||
|
A patent license is "discriminatory" if it does not include within
|
||||||
|
the scope of its coverage, prohibits the exercise of, or is
|
||||||
|
conditioned on the non-exercise of one or more of the rights that are
|
||||||
|
specifically granted under this License. You may not convey a covered
|
||||||
|
work if you are a party to an arrangement with a third party that is
|
||||||
|
in the business of distributing software, under which you make payment
|
||||||
|
to the third party based on the extent of your activity of conveying
|
||||||
|
the work, and under which the third party grants, to any of the
|
||||||
|
parties who would receive the covered work from you, a discriminatory
|
||||||
|
patent license (a) in connection with copies of the covered work
|
||||||
|
conveyed by you (or copies made from those copies), or (b) primarily
|
||||||
|
for and in connection with specific products or compilations that
|
||||||
|
contain the covered work, unless you entered into that arrangement,
|
||||||
|
or that patent license was granted, prior to 28 March 2007.
|
||||||
|
|
||||||
|
Nothing in this License shall be construed as excluding or limiting
|
||||||
|
any implied license or other defenses to infringement that may
|
||||||
|
otherwise be available to you under applicable patent law.
|
||||||
|
|
||||||
|
12. No Surrender of Others' Freedom.
|
||||||
|
|
||||||
|
If conditions are imposed on you (whether by court order, agreement or
|
||||||
|
otherwise) that contradict the conditions of this License, they do not
|
||||||
|
excuse you from the conditions of this License. If you cannot convey a
|
||||||
|
covered work so as to satisfy simultaneously your obligations under this
|
||||||
|
License and any other pertinent obligations, then as a consequence you may
|
||||||
|
not convey it at all. For example, if you agree to terms that obligate you
|
||||||
|
to collect a royalty for further conveying from those to whom you convey
|
||||||
|
the Program, the only way you could satisfy both those terms and this
|
||||||
|
License would be to refrain entirely from conveying the Program.
|
||||||
|
|
||||||
|
13. Use with the GNU Affero General Public License.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, you have
|
||||||
|
permission to link or combine any covered work with a work licensed
|
||||||
|
under version 3 of the GNU Affero General Public License into a single
|
||||||
|
combined work, and to convey the resulting work. The terms of this
|
||||||
|
License will continue to apply to the part which is the covered work,
|
||||||
|
but the special requirements of the GNU Affero General Public License,
|
||||||
|
section 13, concerning interaction through a network will apply to the
|
||||||
|
combination as such.
|
||||||
|
|
||||||
|
14. Revised Versions of this License.
|
||||||
|
|
||||||
|
The Free Software Foundation may publish revised and/or new versions of
|
||||||
|
the GNU General Public License from time to time. Such new versions will
|
||||||
|
be similar in spirit to the present version, but may differ in detail to
|
||||||
|
address new problems or concerns.
|
||||||
|
|
||||||
|
Each version is given a distinguishing version number. If the
|
||||||
|
Program specifies that a certain numbered version of the GNU General
|
||||||
|
Public License "or any later version" applies to it, you have the
|
||||||
|
option of following the terms and conditions either of that numbered
|
||||||
|
version or of any later version published by the Free Software
|
||||||
|
Foundation. If the Program does not specify a version number of the
|
||||||
|
GNU General Public License, you may choose any version ever published
|
||||||
|
by the Free Software Foundation.
|
||||||
|
|
||||||
|
If the Program specifies that a proxy can decide which future
|
||||||
|
versions of the GNU General Public License can be used, that proxy's
|
||||||
|
public statement of acceptance of a version permanently authorizes you
|
||||||
|
to choose that version for the Program.
|
||||||
|
|
||||||
|
Later license versions may give you additional or different
|
||||||
|
permissions. However, no additional obligations are imposed on any
|
||||||
|
author or copyright holder as a result of your choosing to follow a
|
||||||
|
later version.
|
||||||
|
|
||||||
|
15. Disclaimer of Warranty.
|
||||||
|
|
||||||
|
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||||
|
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||||
|
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||||
|
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||||
|
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||||
|
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||||
|
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||||
|
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||||
|
|
||||||
|
16. Limitation of Liability.
|
||||||
|
|
||||||
|
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||||
|
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||||
|
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||||
|
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||||
|
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||||
|
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||||
|
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||||
|
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||||
|
SUCH DAMAGES.
|
||||||
|
|
||||||
|
17. Interpretation of Sections 15 and 16.
|
||||||
|
|
||||||
|
If the disclaimer of warranty and limitation of liability provided
|
||||||
|
above cannot be given local legal effect according to their terms,
|
||||||
|
reviewing courts shall apply local law that most closely approximates
|
||||||
|
an absolute waiver of all civil liability in connection with the
|
||||||
|
Program, unless a warranty or assumption of liability accompanies a
|
||||||
|
copy of the Program in return for a fee.
|
||||||
|
|
||||||
|
END OF TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
How to Apply These Terms to Your New Programs
|
||||||
|
|
||||||
|
If you develop a new program, and you want it to be of the greatest
|
||||||
|
possible use to the public, the best way to achieve this is to make it
|
||||||
|
free software which everyone can redistribute and change under these terms.
|
||||||
|
|
||||||
|
To do so, attach the following notices to the program. It is safest
|
||||||
|
to attach them to the start of each source file to most effectively
|
||||||
|
state the exclusion of warranty; and each file should have at least
|
||||||
|
the "copyright" line and a pointer to where the full notice is found.
|
||||||
|
|
||||||
|
<one line to give the program's name and a brief idea of what it does.>
|
||||||
|
Copyright (C) <year> <name of author>
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
Also add information on how to contact you by electronic and paper mail.
|
||||||
|
|
||||||
|
If the program does terminal interaction, make it output a short
|
||||||
|
notice like this when it starts in an interactive mode:
|
||||||
|
|
||||||
|
<program> Copyright (C) <year> <name of author>
|
||||||
|
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||||
|
This is free software, and you are welcome to redistribute it
|
||||||
|
under certain conditions; type `show c' for details.
|
||||||
|
|
||||||
|
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||||
|
parts of the General Public License. Of course, your program's commands
|
||||||
|
might be different; for a GUI interface, you would use an "about box".
|
||||||
|
|
||||||
|
You should also get your employer (if you work as a programmer) or school,
|
||||||
|
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||||
|
For more information on this, and how to apply and follow the GNU GPL, see
|
||||||
|
<http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
The GNU General Public License does not permit incorporating your program
|
||||||
|
into proprietary programs. If your program is a subroutine library, you
|
||||||
|
may consider it more useful to permit linking proprietary applications with
|
||||||
|
the library. If this is what you want to do, use the GNU Lesser General
|
||||||
|
Public License instead of this License. But first, please read
|
||||||
|
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
||||||
154
yolov5-face_Jan1/README.md
Executable file
154
yolov5-face_Jan1/README.md
Executable file
@ -0,0 +1,154 @@
|
|||||||
|
## What's New
|
||||||
|
|
||||||
|
**2021.11**: BlazeFace
|
||||||
|
| Method | multi scale | Easy | Medium | Hard | Model Size(MB) | Link |
|
||||||
|
| -------------------- | ----------- | ----- | ------ | ----- | -------------- | ----- |
|
||||||
|
| BlazeFace | Ture | 88.5 | 85.5 | 73.1 | 0.472 | https://github.com/PaddlePaddle/PaddleDetection |
|
||||||
|
| BlazeFace-FPN-SSH | Ture | 90.7 | 88.3 | 79.3 | 0.479 | https://github.com/PaddlePaddle/PaddleDetection |
|
||||||
|
| yolov5-blazeface | True | 90.4 | 88.7 | 78.0 | 0.493 | https://pan.baidu.com/s/1RHp8wa615OuDVhsO-qrMpQ pwd:r3v3 |
|
||||||
|
| yolov5-blazeface-fpn | True | 90.8 | 89.4 | 79.1 | 0.493 | - |
|
||||||
|
|
||||||
|
**2021.08**: Yolov5-face to TensorRT.
|
||||||
|
Inference time on rtx2080ti.
|
||||||
|
|Backbone|Pytorch |TensorRT_FP16 |
|
||||||
|
|:---:|:----:|:----:|
|
||||||
|
|yolov5n-0.5|11.9ms|2.9ms|
|
||||||
|
|yolov5n-face|20.7ms|2.5ms|
|
||||||
|
|yolov5s-face|25.2ms|3.0ms|
|
||||||
|
|yolov5m-face|61.2ms|3.0ms|
|
||||||
|
|yolov5l-face|109.6ms|3.6ms|
|
||||||
|
> Note: (1) Model inference (2) Resolution 640x640
|
||||||
|
|
||||||
|
|
||||||
|
**2021.08**: Add new training dataset [Multi-Task-Facial](https://drive.google.com/file/d/1Pwd6ga06cDjeOX20RSC1KWiT888Q9IpM/view?usp=sharing),improve large face detection.
|
||||||
|
| Method | Easy | Medium | Hard |
|
||||||
|
| -------------------- | ----- | ------ | ----- |
|
||||||
|
| ***YOLOv5s*** | 94.56 | 92.92 | 83.84 |
|
||||||
|
| ***YOLOv5m*** | 95.46 | 93.87 | 85.54 |
|
||||||
|
|
||||||
|
|
||||||
|
## Introduction
|
||||||
|
|
||||||
|
Yolov5-face is a real-time,high accuracy face detection.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
## Performance
|
||||||
|
|
||||||
|
Single Scale Inference on VGA resolution(max side is equal to 640 and scale).
|
||||||
|
|
||||||
|
***Large family***
|
||||||
|
|
||||||
|
| Method | Backbone | Easy | Medium | Hard | \#Params(M) | \#Flops(G) |
|
||||||
|
| :------------------ | -------------- | ----- | ------ | ----- | ----------- | ---------- |
|
||||||
|
| DSFD (CVPR19) | ResNet152 | 94.29 | 91.47 | 71.39 | 120.06 | 259.55 |
|
||||||
|
| RetinaFace (CVPR20) | ResNet50 | 94.92 | 91.90 | 64.17 | 29.50 | 37.59 |
|
||||||
|
| HAMBox (CVPR20) | ResNet50 | 95.27 | 93.76 | 76.75 | 30.24 | 43.28 |
|
||||||
|
| TinaFace (Arxiv20) | ResNet50 | 95.61 | 94.25 | 81.43 | 37.98 | 172.95 |
|
||||||
|
| SCRFD-34GF(Arxiv21) | Bottleneck Res | 96.06 | 94.92 | 85.29 | 9.80 | 34.13 |
|
||||||
|
| SCRFD-10GF(Arxiv21) | Basic Res | 95.16 | 93.87 | 83.05 | 3.86 | 9.98 |
|
||||||
|
| - | - | - | - | - | - | - |
|
||||||
|
| ***YOLOv5s*** | CSPNet | 94.67 | 92.75 | 83.03 | 7.075 | 5.751 |
|
||||||
|
| **YOLOv5s6** | CSPNet | 95.48 | 93.66 | 82.8 | 12.386 | 6.280 |
|
||||||
|
| ***YOLOv5m*** | CSPNet | 95.30 | 93.76 | 85.28 | 21.063 | 18.146 |
|
||||||
|
| **YOLOv5m6** | CSPNet | 95.66 | 94.1 | 85.2 | 35.485 | 19.773 |
|
||||||
|
| ***YOLOv5l*** | CSPNet | 95.78 | 94.30 | 86.13 | 46.627 | 41.607 |
|
||||||
|
| ***YOLOv5l6*** | CSPNet | 96.38 | 94.90 | 85.88 | 76.674 | 45.279 |
|
||||||
|
|
||||||
|
|
||||||
|
***Small family***
|
||||||
|
|
||||||
|
| Method | Backbone | Easy | Medium | Hard | \#Params(M) | \#Flops(G) |
|
||||||
|
| -------------------- | --------------- | ----- | ------ | ----- | ----------- | ---------- |
|
||||||
|
| RetinaFace (CVPR20 | MobileNet0.25 | 87.78 | 81.16 | 47.32 | 0.44 | 0.802 |
|
||||||
|
| FaceBoxes (IJCB17) | | 76.17 | 57.17 | 24.18 | 1.01 | 0.275 |
|
||||||
|
| SCRFD-0.5GF(Arxiv21) | Depth-wise Conv | 90.57 | 88.12 | 68.51 | 0.57 | 0.508 |
|
||||||
|
| SCRFD-2.5GF(Arxiv21) | Basic Res | 93.78 | 92.16 | 77.87 | 0.67 | 2.53 |
|
||||||
|
| - | - | - | - | - | - | - |
|
||||||
|
| ***YOLOv5n*** | ShuffleNetv2 | 93.74 | 91.54 | 80.32 | 1.726 | 2.111 |
|
||||||
|
| ***YOLOv5n-0.5*** | ShuffleNetv2 | 90.76 | 88.12 | 73.82 | 0.447 | 0.571 |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## Pretrained-Models
|
||||||
|
|
||||||
|
| Name | Easy | Medium | Hard | FLOPs(G) | Params(M) | Link |
|
||||||
|
| ----------- | ----- | ------ | ----- | -------- | --------- | ------------------------------------------------------------ |
|
||||||
|
| yolov5n-0.5 | 90.76 | 88.12 | 73.82 | 0.571 | 0.447 | Link: https://pan.baidu.com/s/1UgiKwzFq5NXI2y-Zui1kiA pwd: s5ow, https://drive.google.com/file/d/1XJ8w55Y9Po7Y5WP4X1Kg1a77ok2tL_KY/view?usp=sharing |
|
||||||
|
| yolov5n | 93.61 | 91.52 | 80.53 | 2.111 | 1.726 | Link: https://pan.baidu.com/s/1xsYns6cyB84aPDgXB7sNDQ pwd: lw9j,https://drive.google.com/file/d/18oenL6tjFkdR1f5IgpYeQfDFqU4w3jEr/view?usp=sharing |
|
||||||
|
| yolov5s | 94.33 | 92.61 | 83.15 | 5.751 | 7.075 | Link: https://pan.baidu.com/s/1fyzLxZYx7Ja1_PCIWRhxbw Link: eq0q,https://drive.google.com/file/d/1zxaHeLDyID9YU4-hqK7KNepXIwbTkRIO/view?usp=sharing |
|
||||||
|
| yolov5m | 95.30 | 93.76 | 85.28 | 18.146 | 21.063 | Link: https://pan.baidu.com/s/1oePvd2K6R4-gT0g7EERmdQ pwd: jmtk, https://drive.google.com/file/d/1Sx-KEGXSxvPMS35JhzQKeRBiqC98VDDI |
|
||||||
|
| yolov5l | 95.78 | 94.30 | 86.13 | 41.607 | 46.627 | Link: https://pan.baidu.com/s/11l4qSEgA2-c7e8lpRt8iFw pwd: 0mq7, https://drive.google.com/file/d/16F-3AjdQBn9p3nMhStUxfDNAE_1bOF_r |
|
||||||
|
|
||||||
|
## Data preparation
|
||||||
|
|
||||||
|
1. Download WIDERFace datasets.
|
||||||
|
2. Download annotation files from [google drive](https://drive.google.com/file/d/1tU_IjyOwGQfGNUvZGwWWM4SwxKp2PUQ8/view?usp=sharing).
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python3 train2yolo.py
|
||||||
|
python3 val2yolo.py
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## Training
|
||||||
|
|
||||||
|
```shell
|
||||||
|
CUDA_VISIBLE_DEVICES="0,1,2,3" python3 train.py --data data/widerface.yaml --cfg models/yolov5s.yaml --weights 'pretrained models'
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## WIDERFace Evaluation
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python3 test_widerface.py --weights 'your test model' --img-size 640
|
||||||
|
|
||||||
|
cd widerface_evaluate
|
||||||
|
python3 evaluation.py
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Test
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
|
||||||
|
#### Android demo
|
||||||
|
|
||||||
|
https://github.com/FeiGeChuanShu/ncnn_Android_face/tree/main/ncnn-android-yolov5_face
|
||||||
|
|
||||||
|
#### opencv dnn demo
|
||||||
|
|
||||||
|
https://github.com/hpc203/yolov5-face-landmarks-opencv-v2
|
||||||
|
|
||||||
|
#### References
|
||||||
|
|
||||||
|
https://github.com/ultralytics/yolov5
|
||||||
|
|
||||||
|
https://github.com/DayBreak-u/yolo-face-with-landmark
|
||||||
|
|
||||||
|
https://github.com/xialuxi/yolov5_face_landmark
|
||||||
|
|
||||||
|
https://github.com/biubug6/Pytorch_Retinaface
|
||||||
|
|
||||||
|
https://github.com/deepinsight/insightface
|
||||||
|
|
||||||
|
|
||||||
|
#### Citation
|
||||||
|
- If you think this work is useful for you, please cite
|
||||||
|
|
||||||
|
@article{YOLO5Face,
|
||||||
|
title = {YOLO5Face: Why Reinventing a Face Detector},
|
||||||
|
author = {Delong Qi and Weijun Tan and Qi Yao and Jingfeng Liu},
|
||||||
|
booktitle = {ArXiv preprint ArXiv:2105.12931},
|
||||||
|
year = {2021}
|
||||||
|
}
|
||||||
|
|
||||||
|
#### Main Contributors
|
||||||
|
https://github.com/derronqi
|
||||||
|
|
||||||
|
https://github.com/changhy666
|
||||||
|
|
||||||
|
https://github.com/bobo0810
|
||||||
|
|
||||||
40
yolov5-face_Jan1/README_DISPENSION.md
Executable file
40
yolov5-face_Jan1/README_DISPENSION.md
Executable file
@ -0,0 +1,40 @@
|
|||||||
|
## DISPENSION
|
||||||
|
## INTOXIVISION PROJECT - YOLOV5-FACE
|
||||||
|
## JANUARY 1, 2022
|
||||||
|
## Lucas Wan (lucas.wan@dal.ca)
|
||||||
|
|
||||||
|
**TO RUN**
|
||||||
|
|
||||||
|
Ensure that all required packages are installed (see requirements.txt)
|
||||||
|
|
||||||
|
python3 detect_face.py --image "/image-location"
|
||||||
|
|
||||||
|
Can edit detect_face to update write location.
|
||||||
|
|
||||||
|
**INFO**
|
||||||
|
|
||||||
|
Uses pretrained model: yolov5m6_face. This model has the best recorded accuracy.
|
||||||
|
|
||||||
|
Landmarks output gives X Y coordinates of [Left Eye, Right Eye, Nose, Left Mouth, Right Mouth, Left Inner Eyebrow, Right Inner Eyebrow].
|
||||||
|
|
||||||
|
X = 0 is left of image (right = positive), Y = 0 is top of image (down = positive). X and Y range from [0 , 1].
|
||||||
|
|
||||||
|
Location of eyebrows are calculated from eye locations based on average distances between pupils (63mm) and between pupil to top of eyebrow (25mm).
|
||||||
|
|
||||||
|
Note that is folder only include files that are required for running the pretrained model (can not train a new model).
|
||||||
|
|
||||||
|
**REFERENCES**
|
||||||
|
|
||||||
|
https://github.com/ultralytics/yolov5
|
||||||
|
|
||||||
|
https://github.com/deepcam-cn/yolov5-face
|
||||||
|
|
||||||
|
https://www.techrxiv.org/articles/preprint/TFW_Annotated_Thermal_Faces_in_the_Wild_Dataset/17004538
|
||||||
|
|
||||||
|
**TO DO**
|
||||||
|
|
||||||
|
Combine landmark location information from multiple images (obtain average from burst of frames).
|
||||||
|
|
||||||
|
Identify central person (currently only outputting landmarks for 1 person - could be person off to the side).
|
||||||
|
|
||||||
|
Determine which packages in requirements.txt can be omitted.
|
||||||
BIN
yolov5-face_Jan1/data/images/100.png
Normal file
BIN
yolov5-face_Jan1/data/images/100.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 235 KiB |
BIN
yolov5-face_Jan1/data/images/thermal1.png
Normal file
BIN
yolov5-face_Jan1/data/images/thermal1.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 130 KiB |
0
yolov5-face_Jan1/models/__init__.py
Normal file
0
yolov5-face_Jan1/models/__init__.py
Normal file
BIN
yolov5-face_Jan1/models/__pycache__/__init__.cpython-310.pyc
Normal file
BIN
yolov5-face_Jan1/models/__pycache__/__init__.cpython-310.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/models/__pycache__/__init__.cpython-36.pyc
Normal file
BIN
yolov5-face_Jan1/models/__pycache__/__init__.cpython-36.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/models/__pycache__/common.cpython-310.pyc
Normal file
BIN
yolov5-face_Jan1/models/__pycache__/common.cpython-310.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/models/__pycache__/common.cpython-36.pyc
Normal file
BIN
yolov5-face_Jan1/models/__pycache__/common.cpython-36.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/models/__pycache__/experimental.cpython-310.pyc
Normal file
BIN
yolov5-face_Jan1/models/__pycache__/experimental.cpython-310.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/models/__pycache__/experimental.cpython-36.pyc
Normal file
BIN
yolov5-face_Jan1/models/__pycache__/experimental.cpython-36.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/models/__pycache__/yolo.cpython-310.pyc
Normal file
BIN
yolov5-face_Jan1/models/__pycache__/yolo.cpython-310.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/models/__pycache__/yolo.cpython-36.pyc
Normal file
BIN
yolov5-face_Jan1/models/__pycache__/yolo.cpython-36.pyc
Normal file
Binary file not shown.
439
yolov5-face_Jan1/models/common.py
Normal file
439
yolov5-face_Jan1/models/common.py
Normal file
@ -0,0 +1,439 @@
|
|||||||
|
# This file contains modules common to various models
|
||||||
|
|
||||||
|
import math
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import requests
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from PIL import Image, ImageDraw
|
||||||
|
|
||||||
|
from utils.datasets import letterbox
|
||||||
|
from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh
|
||||||
|
from utils.plots import color_list
|
||||||
|
|
||||||
|
def autopad(k, p=None): # kernel, padding
|
||||||
|
# Pad to 'same'
|
||||||
|
if p is None:
|
||||||
|
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
||||||
|
return p
|
||||||
|
|
||||||
|
def channel_shuffle(x, groups):
|
||||||
|
batchsize, num_channels, height, width = x.data.size()
|
||||||
|
channels_per_group = num_channels // groups
|
||||||
|
|
||||||
|
# reshape
|
||||||
|
x = x.view(batchsize, groups, channels_per_group, height, width)
|
||||||
|
x = torch.transpose(x, 1, 2).contiguous()
|
||||||
|
|
||||||
|
# flatten
|
||||||
|
x = x.view(batchsize, -1, height, width)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def DWConv(c1, c2, k=1, s=1, act=True):
|
||||||
|
# Depthwise convolution
|
||||||
|
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
|
||||||
|
|
||||||
|
class Conv(nn.Module):
|
||||||
|
# Standard convolution
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||||||
|
super(Conv, self).__init__()
|
||||||
|
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
||||||
|
self.bn = nn.BatchNorm2d(c2)
|
||||||
|
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
||||||
|
#self.act = self.act = nn.LeakyReLU(0.1, inplace=True) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.act(self.bn(self.conv(x)))
|
||||||
|
|
||||||
|
def fuseforward(self, x):
|
||||||
|
return self.act(self.conv(x))
|
||||||
|
|
||||||
|
class StemBlock(nn.Module):
|
||||||
|
def __init__(self, c1, c2, k=3, s=2, p=None, g=1, act=True):
|
||||||
|
super(StemBlock, self).__init__()
|
||||||
|
self.stem_1 = Conv(c1, c2, k, s, p, g, act)
|
||||||
|
self.stem_2a = Conv(c2, c2 // 2, 1, 1, 0)
|
||||||
|
self.stem_2b = Conv(c2 // 2, c2, 3, 2, 1)
|
||||||
|
self.stem_2p = nn.MaxPool2d(kernel_size=2,stride=2,ceil_mode=True)
|
||||||
|
self.stem_3 = Conv(c2 * 2, c2, 1, 1, 0)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
stem_1_out = self.stem_1(x)
|
||||||
|
stem_2a_out = self.stem_2a(stem_1_out)
|
||||||
|
stem_2b_out = self.stem_2b(stem_2a_out)
|
||||||
|
stem_2p_out = self.stem_2p(stem_1_out)
|
||||||
|
out = self.stem_3(torch.cat((stem_2b_out,stem_2p_out),1))
|
||||||
|
return out
|
||||||
|
|
||||||
|
class Bottleneck(nn.Module):
|
||||||
|
# Standard bottleneck
|
||||||
|
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
||||||
|
super(Bottleneck, self).__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
||||||
|
self.add = shortcut and c1 == c2
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||||
|
|
||||||
|
class BottleneckCSP(nn.Module):
|
||||||
|
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
||||||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||||
|
super(BottleneckCSP, self).__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
||||||
|
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
||||||
|
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
||||||
|
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
||||||
|
self.act = nn.LeakyReLU(0.1, inplace=True)
|
||||||
|
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
y1 = self.cv3(self.m(self.cv1(x)))
|
||||||
|
y2 = self.cv2(x)
|
||||||
|
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
|
||||||
|
|
||||||
|
|
||||||
|
class C3(nn.Module):
|
||||||
|
# CSP Bottleneck with 3 convolutions
|
||||||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||||
|
super(C3, self).__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv2 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
|
||||||
|
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
|
||||||
|
|
||||||
|
class ShuffleV2Block(nn.Module):
|
||||||
|
def __init__(self, inp, oup, stride):
|
||||||
|
super(ShuffleV2Block, self).__init__()
|
||||||
|
|
||||||
|
if not (1 <= stride <= 3):
|
||||||
|
raise ValueError('illegal stride value')
|
||||||
|
self.stride = stride
|
||||||
|
|
||||||
|
branch_features = oup // 2
|
||||||
|
assert (self.stride != 1) or (inp == branch_features << 1)
|
||||||
|
|
||||||
|
if self.stride > 1:
|
||||||
|
self.branch1 = nn.Sequential(
|
||||||
|
self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
|
||||||
|
nn.BatchNorm2d(inp),
|
||||||
|
nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
|
||||||
|
nn.BatchNorm2d(branch_features),
|
||||||
|
nn.SiLU(),
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.branch1 = nn.Sequential()
|
||||||
|
|
||||||
|
self.branch2 = nn.Sequential(
|
||||||
|
nn.Conv2d(inp if (self.stride > 1) else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
|
||||||
|
nn.BatchNorm2d(branch_features),
|
||||||
|
nn.SiLU(),
|
||||||
|
self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
|
||||||
|
nn.BatchNorm2d(branch_features),
|
||||||
|
nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
|
||||||
|
nn.BatchNorm2d(branch_features),
|
||||||
|
nn.SiLU(),
|
||||||
|
)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
|
||||||
|
return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
if self.stride == 1:
|
||||||
|
x1, x2 = x.chunk(2, dim=1)
|
||||||
|
out = torch.cat((x1, self.branch2(x2)), dim=1)
|
||||||
|
else:
|
||||||
|
out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
|
||||||
|
out = channel_shuffle(out, 2)
|
||||||
|
return out
|
||||||
|
|
||||||
|
class BlazeBlock(nn.Module):
|
||||||
|
def __init__(self, in_channels,out_channels,mid_channels=None,stride=1):
|
||||||
|
super(BlazeBlock, self).__init__()
|
||||||
|
mid_channels = mid_channels or in_channels
|
||||||
|
assert stride in [1, 2]
|
||||||
|
if stride>1:
|
||||||
|
self.use_pool = True
|
||||||
|
else:
|
||||||
|
self.use_pool = False
|
||||||
|
|
||||||
|
self.branch1 = nn.Sequential(
|
||||||
|
nn.Conv2d(in_channels=in_channels,out_channels=mid_channels,kernel_size=5,stride=stride,padding=2,groups=in_channels),
|
||||||
|
nn.BatchNorm2d(mid_channels),
|
||||||
|
nn.Conv2d(in_channels=mid_channels,out_channels=out_channels,kernel_size=1,stride=1),
|
||||||
|
nn.BatchNorm2d(out_channels),
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.use_pool:
|
||||||
|
self.shortcut = nn.Sequential(
|
||||||
|
nn.MaxPool2d(kernel_size=stride, stride=stride),
|
||||||
|
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
|
||||||
|
nn.BatchNorm2d(out_channels),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.relu = nn.SiLU(inplace=True)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
branch1 = self.branch1(x)
|
||||||
|
out = (branch1+self.shortcut(x)) if self.use_pool else (branch1+x)
|
||||||
|
return self.relu(out)
|
||||||
|
|
||||||
|
class DoubleBlazeBlock(nn.Module):
|
||||||
|
def __init__(self,in_channels,out_channels,mid_channels=None,stride=1):
|
||||||
|
super(DoubleBlazeBlock, self).__init__()
|
||||||
|
mid_channels = mid_channels or in_channels
|
||||||
|
assert stride in [1, 2]
|
||||||
|
if stride > 1:
|
||||||
|
self.use_pool = True
|
||||||
|
else:
|
||||||
|
self.use_pool = False
|
||||||
|
|
||||||
|
self.branch1 = nn.Sequential(
|
||||||
|
nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=5, stride=stride,padding=2,groups=in_channels),
|
||||||
|
nn.BatchNorm2d(in_channels),
|
||||||
|
nn.Conv2d(in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1),
|
||||||
|
nn.BatchNorm2d(mid_channels),
|
||||||
|
nn.SiLU(inplace=True),
|
||||||
|
nn.Conv2d(in_channels=mid_channels, out_channels=mid_channels, kernel_size=5, stride=1,padding=2),
|
||||||
|
nn.BatchNorm2d(mid_channels),
|
||||||
|
nn.Conv2d(in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1),
|
||||||
|
nn.BatchNorm2d(out_channels),
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.use_pool:
|
||||||
|
self.shortcut = nn.Sequential(
|
||||||
|
nn.MaxPool2d(kernel_size=stride, stride=stride),
|
||||||
|
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
|
||||||
|
nn.BatchNorm2d(out_channels),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.relu = nn.SiLU(inplace=True)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
branch1 = self.branch1(x)
|
||||||
|
out = (branch1 + self.shortcut(x)) if self.use_pool else (branch1 + x)
|
||||||
|
return self.relu(out)
|
||||||
|
|
||||||
|
|
||||||
|
class SPP(nn.Module):
|
||||||
|
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
||||||
|
def __init__(self, c1, c2, k=(5, 9, 13)):
|
||||||
|
super(SPP, self).__init__()
|
||||||
|
c_ = c1 // 2 # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
||||||
|
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.cv1(x)
|
||||||
|
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
||||||
|
|
||||||
|
|
||||||
|
class Focus(nn.Module):
|
||||||
|
# Focus wh information into c-space
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||||||
|
super(Focus, self).__init__()
|
||||||
|
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
||||||
|
# self.contract = Contract(gain=2)
|
||||||
|
|
||||||
|
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
||||||
|
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
|
||||||
|
# return self.conv(self.contract(x))
|
||||||
|
|
||||||
|
|
||||||
|
class Contract(nn.Module):
|
||||||
|
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
|
||||||
|
def __init__(self, gain=2):
|
||||||
|
super().__init__()
|
||||||
|
self.gain = gain
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
|
||||||
|
s = self.gain
|
||||||
|
x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
|
||||||
|
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
|
||||||
|
return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
|
||||||
|
|
||||||
|
|
||||||
|
class Expand(nn.Module):
|
||||||
|
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
|
||||||
|
def __init__(self, gain=2):
|
||||||
|
super().__init__()
|
||||||
|
self.gain = gain
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
|
||||||
|
s = self.gain
|
||||||
|
x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
|
||||||
|
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
|
||||||
|
return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
|
||||||
|
|
||||||
|
|
||||||
|
class Concat(nn.Module):
|
||||||
|
# Concatenate a list of tensors along dimension
|
||||||
|
def __init__(self, dimension=1):
|
||||||
|
super(Concat, self).__init__()
|
||||||
|
self.d = dimension
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return torch.cat(x, self.d)
|
||||||
|
|
||||||
|
|
||||||
|
class NMS(nn.Module):
|
||||||
|
# Non-Maximum Suppression (NMS) module
|
||||||
|
conf = 0.25 # confidence threshold
|
||||||
|
iou = 0.45 # IoU threshold
|
||||||
|
classes = None # (optional list) filter by class
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super(NMS, self).__init__()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
|
||||||
|
|
||||||
|
class autoShape(nn.Module):
|
||||||
|
# input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
||||||
|
img_size = 640 # inference size (pixels)
|
||||||
|
conf = 0.25 # NMS confidence threshold
|
||||||
|
iou = 0.45 # NMS IoU threshold
|
||||||
|
classes = None # (optional list) filter by class
|
||||||
|
|
||||||
|
def __init__(self, model):
|
||||||
|
super(autoShape, self).__init__()
|
||||||
|
self.model = model.eval()
|
||||||
|
|
||||||
|
def autoshape(self):
|
||||||
|
print('autoShape already enabled, skipping... ') # model already converted to model.autoshape()
|
||||||
|
return self
|
||||||
|
|
||||||
|
def forward(self, imgs, size=640, augment=False, profile=False):
|
||||||
|
# Inference from various sources. For height=720, width=1280, RGB images example inputs are:
|
||||||
|
# filename: imgs = 'data/samples/zidane.jpg'
|
||||||
|
# URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
|
||||||
|
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
|
||||||
|
# PIL: = Image.open('image.jpg') # HWC x(720,1280,3)
|
||||||
|
# numpy: = np.zeros((720,1280,3)) # HWC
|
||||||
|
# torch: = torch.zeros(16,3,720,1280) # BCHW
|
||||||
|
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
||||||
|
|
||||||
|
p = next(self.model.parameters()) # for device and type
|
||||||
|
if isinstance(imgs, torch.Tensor): # torch
|
||||||
|
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
||||||
|
|
||||||
|
# Pre-process
|
||||||
|
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
|
||||||
|
shape0, shape1 = [], [] # image and inference shapes
|
||||||
|
for i, im in enumerate(imgs):
|
||||||
|
if isinstance(im, str): # filename or uri
|
||||||
|
im = Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im) # open
|
||||||
|
im = np.array(im) # to numpy
|
||||||
|
if im.shape[0] < 5: # image in CHW
|
||||||
|
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
||||||
|
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
|
||||||
|
s = im.shape[:2] # HWC
|
||||||
|
shape0.append(s) # image shape
|
||||||
|
g = (size / max(s)) # gain
|
||||||
|
shape1.append([y * g for y in s])
|
||||||
|
imgs[i] = im # update
|
||||||
|
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
|
||||||
|
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
|
||||||
|
x = np.stack(x, 0) if n > 1 else x[0][None] # stack
|
||||||
|
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
|
||||||
|
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
|
||||||
|
|
||||||
|
# Inference
|
||||||
|
with torch.no_grad():
|
||||||
|
y = self.model(x, augment, profile)[0] # forward
|
||||||
|
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
|
||||||
|
|
||||||
|
# Post-process
|
||||||
|
for i in range(n):
|
||||||
|
scale_coords(shape1, y[i][:, :4], shape0[i])
|
||||||
|
|
||||||
|
return Detections(imgs, y, self.names)
|
||||||
|
|
||||||
|
|
||||||
|
class Detections:
|
||||||
|
# detections class for YOLOv5 inference results
|
||||||
|
def __init__(self, imgs, pred, names=None):
|
||||||
|
super(Detections, self).__init__()
|
||||||
|
d = pred[0].device # device
|
||||||
|
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
|
||||||
|
self.imgs = imgs # list of images as numpy arrays
|
||||||
|
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
||||||
|
self.names = names # class names
|
||||||
|
self.xyxy = pred # xyxy pixels
|
||||||
|
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
||||||
|
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
||||||
|
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
||||||
|
self.n = len(self.pred)
|
||||||
|
|
||||||
|
def display(self, pprint=False, show=False, save=False, render=False):
|
||||||
|
colors = color_list()
|
||||||
|
for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
|
||||||
|
str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
|
||||||
|
if pred is not None:
|
||||||
|
for c in pred[:, -1].unique():
|
||||||
|
n = (pred[:, -1] == c).sum() # detections per class
|
||||||
|
str += f'{n} {self.names[int(c)]}s, ' # add to string
|
||||||
|
if show or save or render:
|
||||||
|
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
|
||||||
|
for *box, conf, cls in pred: # xyxy, confidence, class
|
||||||
|
# str += '%s %.2f, ' % (names[int(cls)], conf) # label
|
||||||
|
ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) # plot
|
||||||
|
if pprint:
|
||||||
|
print(str)
|
||||||
|
if show:
|
||||||
|
img.show(f'Image {i}') # show
|
||||||
|
if save:
|
||||||
|
f = f'results{i}.jpg'
|
||||||
|
str += f"saved to '{f}'"
|
||||||
|
img.save(f) # save
|
||||||
|
if render:
|
||||||
|
self.imgs[i] = np.asarray(img)
|
||||||
|
|
||||||
|
def print(self):
|
||||||
|
self.display(pprint=True) # print results
|
||||||
|
|
||||||
|
def show(self):
|
||||||
|
self.display(show=True) # show results
|
||||||
|
|
||||||
|
def save(self):
|
||||||
|
self.display(save=True) # save results
|
||||||
|
|
||||||
|
def render(self):
|
||||||
|
self.display(render=True) # render results
|
||||||
|
return self.imgs
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self.n
|
||||||
|
|
||||||
|
def tolist(self):
|
||||||
|
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
||||||
|
x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)]
|
||||||
|
for d in x:
|
||||||
|
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
||||||
|
setattr(d, k, getattr(d, k)[0]) # pop out of list
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Classify(nn.Module):
|
||||||
|
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
||||||
|
super(Classify, self).__init__()
|
||||||
|
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
|
||||||
|
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
|
||||||
|
self.flat = nn.Flatten()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
|
||||||
|
return self.flat(self.conv(z)) # flatten to x(b,c2)
|
||||||
133
yolov5-face_Jan1/models/experimental.py
Normal file
133
yolov5-face_Jan1/models/experimental.py
Normal file
@ -0,0 +1,133 @@
|
|||||||
|
# This file contains experimental modules
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from models.common import Conv, DWConv
|
||||||
|
from utils.google_utils import attempt_download
|
||||||
|
|
||||||
|
|
||||||
|
class CrossConv(nn.Module):
|
||||||
|
# Cross Convolution Downsample
|
||||||
|
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
||||||
|
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
||||||
|
super(CrossConv, self).__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
||||||
|
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
||||||
|
self.add = shortcut and c1 == c2
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||||
|
|
||||||
|
|
||||||
|
class Sum(nn.Module):
|
||||||
|
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
|
||||||
|
def __init__(self, n, weight=False): # n: number of inputs
|
||||||
|
super(Sum, self).__init__()
|
||||||
|
self.weight = weight # apply weights boolean
|
||||||
|
self.iter = range(n - 1) # iter object
|
||||||
|
if weight:
|
||||||
|
self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
y = x[0] # no weight
|
||||||
|
if self.weight:
|
||||||
|
w = torch.sigmoid(self.w) * 2
|
||||||
|
for i in self.iter:
|
||||||
|
y = y + x[i + 1] * w[i]
|
||||||
|
else:
|
||||||
|
for i in self.iter:
|
||||||
|
y = y + x[i + 1]
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
class GhostConv(nn.Module):
|
||||||
|
# Ghost Convolution https://github.com/huawei-noah/ghostnet
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
||||||
|
super(GhostConv, self).__init__()
|
||||||
|
c_ = c2 // 2 # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, k, s, None, g, act)
|
||||||
|
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
y = self.cv1(x)
|
||||||
|
return torch.cat([y, self.cv2(y)], 1)
|
||||||
|
|
||||||
|
|
||||||
|
class GhostBottleneck(nn.Module):
|
||||||
|
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
|
||||||
|
def __init__(self, c1, c2, k, s):
|
||||||
|
super(GhostBottleneck, self).__init__()
|
||||||
|
c_ = c2 // 2
|
||||||
|
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
|
||||||
|
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
||||||
|
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
||||||
|
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
|
||||||
|
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.conv(x) + self.shortcut(x)
|
||||||
|
|
||||||
|
|
||||||
|
class MixConv2d(nn.Module):
|
||||||
|
# Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
|
||||||
|
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
|
||||||
|
super(MixConv2d, self).__init__()
|
||||||
|
groups = len(k)
|
||||||
|
if equal_ch: # equal c_ per group
|
||||||
|
i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
|
||||||
|
c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
|
||||||
|
else: # equal weight.numel() per group
|
||||||
|
b = [c2] + [0] * groups
|
||||||
|
a = np.eye(groups + 1, groups, k=-1)
|
||||||
|
a -= np.roll(a, 1, axis=1)
|
||||||
|
a *= np.array(k) ** 2
|
||||||
|
a[0] = 1
|
||||||
|
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
||||||
|
|
||||||
|
self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
|
||||||
|
self.bn = nn.BatchNorm2d(c2)
|
||||||
|
self.act = nn.LeakyReLU(0.1, inplace=True)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
|
||||||
|
|
||||||
|
|
||||||
|
class Ensemble(nn.ModuleList):
|
||||||
|
# Ensemble of models
|
||||||
|
def __init__(self):
|
||||||
|
super(Ensemble, self).__init__()
|
||||||
|
|
||||||
|
def forward(self, x, augment=False):
|
||||||
|
y = []
|
||||||
|
for module in self:
|
||||||
|
y.append(module(x, augment)[0])
|
||||||
|
# y = torch.stack(y).max(0)[0] # max ensemble
|
||||||
|
# y = torch.stack(y).mean(0) # mean ensemble
|
||||||
|
y = torch.cat(y, 1) # nms ensemble
|
||||||
|
return y, None # inference, train output
|
||||||
|
|
||||||
|
|
||||||
|
def attempt_load(weights, map_location=None):
|
||||||
|
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
||||||
|
model = Ensemble()
|
||||||
|
for w in weights if isinstance(weights, list) else [weights]:
|
||||||
|
attempt_download(w)
|
||||||
|
model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model
|
||||||
|
|
||||||
|
# Compatibility updates
|
||||||
|
for m in model.modules():
|
||||||
|
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
|
||||||
|
m.inplace = True # pytorch 1.7.0 compatibility
|
||||||
|
elif type(m) is Conv:
|
||||||
|
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
||||||
|
|
||||||
|
if len(model) == 1:
|
||||||
|
return model[-1] # return model
|
||||||
|
else:
|
||||||
|
print('Ensemble created with %s\n' % weights)
|
||||||
|
for k in ['names', 'stride']:
|
||||||
|
setattr(model, k, getattr(model[-1], k))
|
||||||
|
return model # return ensemble
|
||||||
112
yolov5-face_Jan1/models/export.py
Normal file
112
yolov5-face_Jan1/models/export.py
Normal file
@ -0,0 +1,112 @@
|
|||||||
|
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import sys
|
||||||
|
import time
|
||||||
|
|
||||||
|
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
import models
|
||||||
|
from models.experimental import attempt_load
|
||||||
|
from utils.activations import Hardswish, SiLU
|
||||||
|
from utils.general import set_logging, check_img_size
|
||||||
|
import onnx
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
|
||||||
|
parser.add_argument('--img_size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
|
||||||
|
parser.add_argument('--batch_size', type=int, default=1, help='batch size')
|
||||||
|
parser.add_argument('--onnx2pb', action='store_true', default=False, help='export onnx to pb')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
||||||
|
print(opt)
|
||||||
|
set_logging()
|
||||||
|
t = time.time()
|
||||||
|
|
||||||
|
# Load PyTorch model
|
||||||
|
model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model
|
||||||
|
model.eval()
|
||||||
|
labels = model.names
|
||||||
|
|
||||||
|
# Checks
|
||||||
|
gs = int(max(model.stride)) # grid size (max stride)
|
||||||
|
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
|
||||||
|
|
||||||
|
# Input
|
||||||
|
img = torch.zeros(opt.batch_size, 3, *opt.img_size) # image size(1,3,320,192) iDetection
|
||||||
|
|
||||||
|
# Update model
|
||||||
|
for k, m in model.named_modules():
|
||||||
|
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
||||||
|
if isinstance(m, models.common.Conv): # assign export-friendly activations
|
||||||
|
if isinstance(m.act, nn.Hardswish):
|
||||||
|
m.act = Hardswish()
|
||||||
|
elif isinstance(m.act, nn.SiLU):
|
||||||
|
m.act = SiLU()
|
||||||
|
# elif isinstance(m, models.yolo.Detect):
|
||||||
|
# m.forward = m.forward_export # assign forward (optional)
|
||||||
|
if isinstance(m, models.common.ShuffleV2Block):#shufflenet block nn.SiLU
|
||||||
|
for i in range(len(m.branch1)):
|
||||||
|
if isinstance(m.branch1[i], nn.SiLU):
|
||||||
|
m.branch1[i] = SiLU()
|
||||||
|
for i in range(len(m.branch2)):
|
||||||
|
if isinstance(m.branch2[i], nn.SiLU):
|
||||||
|
m.branch2[i] = SiLU()
|
||||||
|
model.model[-1].export = True # set Detect() layer export=True
|
||||||
|
y = model(img) # dry run
|
||||||
|
|
||||||
|
# ONNX export
|
||||||
|
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
|
||||||
|
f = opt.weights.replace('.pt', '.onnx') # filename
|
||||||
|
model.fuse() # only for ONNX
|
||||||
|
input_names=['data']
|
||||||
|
output_names=['stride_' + str(int(x)) for x in model.stride]
|
||||||
|
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=input_names,
|
||||||
|
output_names=output_names)
|
||||||
|
|
||||||
|
# Checks
|
||||||
|
onnx_model = onnx.load(f) # load onnx model
|
||||||
|
onnx.checker.check_model(onnx_model) # check onnx model
|
||||||
|
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
||||||
|
print('ONNX export success, saved as %s' % f)
|
||||||
|
# Finish
|
||||||
|
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
|
||||||
|
|
||||||
|
# PB export
|
||||||
|
if opt.onnx2pb:
|
||||||
|
print('download the newest onnx_tf by https://github.com/onnx/onnx-tensorflow/tree/master/onnx_tf')
|
||||||
|
from onnx_tf.backend import prepare
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
outpb = f.replace('.onnx', '.pb') # filename
|
||||||
|
# strict=True maybe leads to KeyError: 'pyfunc_0', check: https://github.com/onnx/onnx-tensorflow/issues/167
|
||||||
|
tf_rep = prepare(onnx_model, strict=False) # prepare tf representation
|
||||||
|
tf_rep.export_graph(outpb) # export the model
|
||||||
|
|
||||||
|
out_onnx = tf_rep.run(img) # onnx output
|
||||||
|
|
||||||
|
# check pb
|
||||||
|
with tf.Graph().as_default():
|
||||||
|
graph_def = tf.GraphDef()
|
||||||
|
with open(outpb, "rb") as f:
|
||||||
|
graph_def.ParseFromString(f.read())
|
||||||
|
tf.import_graph_def(graph_def, name="")
|
||||||
|
with tf.Session() as sess:
|
||||||
|
init = tf.global_variables_initializer()
|
||||||
|
input_x = sess.graph.get_tensor_by_name(input_names[0]+':0') # input
|
||||||
|
outputs = []
|
||||||
|
for i in output_names:
|
||||||
|
outputs.append(sess.graph.get_tensor_by_name(i+':0'))
|
||||||
|
out_pb = sess.run(outputs, feed_dict={input_x: img})
|
||||||
|
|
||||||
|
print(f'out_pytorch {y}')
|
||||||
|
print(f'out_onnx {out_onnx}')
|
||||||
|
print(f'out_pb {out_pb}')
|
||||||
343
yolov5-face_Jan1/models/yolo.py
Normal file
343
yolov5-face_Jan1/models/yolo.py
Normal file
@ -0,0 +1,343 @@
|
|||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
import sys
|
||||||
|
from copy import deepcopy
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, C3, ShuffleV2Block, Concat, NMS, autoShape, StemBlock, BlazeBlock, DoubleBlazeBlock
|
||||||
|
from models.experimental import MixConv2d, CrossConv
|
||||||
|
from utils.autoanchor import check_anchor_order
|
||||||
|
from utils.general import make_divisible, check_file, set_logging
|
||||||
|
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
|
||||||
|
select_device, copy_attr
|
||||||
|
|
||||||
|
try:
|
||||||
|
import thop # for FLOPS computation
|
||||||
|
except ImportError:
|
||||||
|
thop = None
|
||||||
|
|
||||||
|
|
||||||
|
class Detect(nn.Module):
|
||||||
|
stride = None # strides computed during build
|
||||||
|
export = False # onnx export
|
||||||
|
export_cat = False # onnx export cat output
|
||||||
|
|
||||||
|
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
|
||||||
|
super(Detect, self).__init__()
|
||||||
|
self.nc = nc # number of classes
|
||||||
|
#self.no = nc + 5 # number of outputs per anchor
|
||||||
|
self.no = nc + 5 + 10 # number of outputs per anchor
|
||||||
|
|
||||||
|
self.nl = len(anchors) # number of detection layers
|
||||||
|
self.na = len(anchors[0]) // 2 # number of anchors
|
||||||
|
self.grid = [torch.zeros(1)] * self.nl # init grid
|
||||||
|
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
||||||
|
self.register_buffer('anchors', a) # shape(nl,na,2)
|
||||||
|
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
||||||
|
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
# x = x.copy() # for profiling
|
||||||
|
z = [] # inference output
|
||||||
|
# self.training |= self.export
|
||||||
|
if self.export:
|
||||||
|
for i in range(self.nl):
|
||||||
|
x[i] = self.m[i](x[i])
|
||||||
|
bs, _, ny, nx = x[i].shape # x(bs,48,20,20) to x(bs,3,20,20,16)
|
||||||
|
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
||||||
|
|
||||||
|
return x
|
||||||
|
if self.export_cat:
|
||||||
|
for i in range(self.nl):
|
||||||
|
x[i] = self.m[i](x[i]) # conv
|
||||||
|
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
||||||
|
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
||||||
|
|
||||||
|
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
||||||
|
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
||||||
|
|
||||||
|
y = torch.full_like(x[i], 0)
|
||||||
|
y = y + torch.cat((x[i][:, :, :, :, 0:5].sigmoid(), torch.cat((x[i][:, :, :, :, 5:15], x[i][:, :, :, :, 15:15+self.nc].sigmoid()), 4)), 4)
|
||||||
|
|
||||||
|
box_xy = (y[:, :, :, :, 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
|
||||||
|
box_wh = (y[:, :, :, :, 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
||||||
|
# box_conf = torch.cat((box_xy, torch.cat((box_wh, y[:, :, :, :, 4:5]), 4)), 4)
|
||||||
|
|
||||||
|
landm1 = y[:, :, :, :, 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x1 y1
|
||||||
|
landm2 = y[:, :, :, :, 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x2 y2
|
||||||
|
landm3 = y[:, :, :, :, 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x3 y3
|
||||||
|
landm4 = y[:, :, :, :, 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x4 y4
|
||||||
|
landm5 = y[:, :, :, :, 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x5 y5
|
||||||
|
# landm = torch.cat((landm1, torch.cat((landm2, torch.cat((landm3, torch.cat((landm4, landm5), 4)), 4)), 4)), 4)
|
||||||
|
# y = torch.cat((box_conf, torch.cat((landm, y[:, :, :, :, 15:15+self.nc]), 4)), 4)
|
||||||
|
y = torch.cat([box_xy, box_wh, y[:, :, :, :, 4:5], landm1, landm2, landm3, landm4, landm5, y[:, :, :, :, 15:15+self.nc]], -1)
|
||||||
|
|
||||||
|
z.append(y.view(bs, -1, self.no))
|
||||||
|
return torch.cat(z, 1)
|
||||||
|
|
||||||
|
for i in range(self.nl):
|
||||||
|
x[i] = self.m[i](x[i]) # conv
|
||||||
|
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
||||||
|
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
||||||
|
|
||||||
|
if not self.training: # inference
|
||||||
|
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
||||||
|
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
||||||
|
|
||||||
|
y = torch.full_like(x[i], 0)
|
||||||
|
class_range = list(range(5)) + list(range(15,15+self.nc))
|
||||||
|
y[..., class_range] = x[i][..., class_range].sigmoid()
|
||||||
|
y[..., 5:15] = x[i][..., 5:15]
|
||||||
|
#y = x[i].sigmoid()
|
||||||
|
|
||||||
|
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
|
||||||
|
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
||||||
|
|
||||||
|
#y[..., 5:15] = y[..., 5:15] * 8 - 4
|
||||||
|
y[..., 5:7] = y[..., 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x1 y1
|
||||||
|
y[..., 7:9] = y[..., 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x2 y2
|
||||||
|
y[..., 9:11] = y[..., 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x3 y3
|
||||||
|
y[..., 11:13] = y[..., 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x4 y4
|
||||||
|
y[..., 13:15] = y[..., 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x5 y5
|
||||||
|
|
||||||
|
#y[..., 5:7] = (y[..., 5:7] * 2 -1) * self.anchor_grid[i] # landmark x1 y1
|
||||||
|
#y[..., 7:9] = (y[..., 7:9] * 2 -1) * self.anchor_grid[i] # landmark x2 y2
|
||||||
|
#y[..., 9:11] = (y[..., 9:11] * 2 -1) * self.anchor_grid[i] # landmark x3 y3
|
||||||
|
#y[..., 11:13] = (y[..., 11:13] * 2 -1) * self.anchor_grid[i] # landmark x4 y4
|
||||||
|
#y[..., 13:15] = (y[..., 13:15] * 2 -1) * self.anchor_grid[i] # landmark x5 y5
|
||||||
|
|
||||||
|
z.append(y.view(bs, -1, self.no))
|
||||||
|
|
||||||
|
return x if self.training else (torch.cat(z, 1), x)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _make_grid(nx=20, ny=20):
|
||||||
|
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
||||||
|
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
||||||
|
|
||||||
|
|
||||||
|
class Model(nn.Module):
|
||||||
|
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes
|
||||||
|
super(Model, self).__init__()
|
||||||
|
if isinstance(cfg, dict):
|
||||||
|
self.yaml = cfg # model dict
|
||||||
|
else: # is *.yaml
|
||||||
|
import yaml # for torch hub
|
||||||
|
self.yaml_file = Path(cfg).name
|
||||||
|
with open(cfg) as f:
|
||||||
|
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
||||||
|
|
||||||
|
# Define model
|
||||||
|
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
||||||
|
if nc and nc != self.yaml['nc']:
|
||||||
|
logger.info('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc))
|
||||||
|
self.yaml['nc'] = nc # override yaml value
|
||||||
|
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
||||||
|
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
||||||
|
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
|
||||||
|
|
||||||
|
# Build strides, anchors
|
||||||
|
m = self.model[-1] # Detect()
|
||||||
|
if isinstance(m, Detect):
|
||||||
|
s = 128 # 2x min stride
|
||||||
|
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
||||||
|
m.anchors /= m.stride.view(-1, 1, 1)
|
||||||
|
check_anchor_order(m)
|
||||||
|
self.stride = m.stride
|
||||||
|
self._initialize_biases() # only run once
|
||||||
|
# print('Strides: %s' % m.stride.tolist())
|
||||||
|
|
||||||
|
# Init weights, biases
|
||||||
|
initialize_weights(self)
|
||||||
|
self.info()
|
||||||
|
logger.info('')
|
||||||
|
|
||||||
|
def forward(self, x, augment=False, profile=False):
|
||||||
|
if augment:
|
||||||
|
img_size = x.shape[-2:] # height, width
|
||||||
|
s = [1, 0.83, 0.67] # scales
|
||||||
|
f = [None, 3, None] # flips (2-ud, 3-lr)
|
||||||
|
y = [] # outputs
|
||||||
|
for si, fi in zip(s, f):
|
||||||
|
xi = scale_img(x.flip(fi) if fi else x, si)
|
||||||
|
yi = self.forward_once(xi)[0] # forward
|
||||||
|
# cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
||||||
|
yi[..., :4] /= si # de-scale
|
||||||
|
if fi == 2:
|
||||||
|
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
|
||||||
|
elif fi == 3:
|
||||||
|
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
|
||||||
|
y.append(yi)
|
||||||
|
return torch.cat(y, 1), None # augmented inference, train
|
||||||
|
else:
|
||||||
|
return self.forward_once(x, profile) # single-scale inference, train
|
||||||
|
|
||||||
|
def forward_once(self, x, profile=False):
|
||||||
|
y, dt = [], [] # outputs
|
||||||
|
for m in self.model:
|
||||||
|
if m.f != -1: # if not from previous layer
|
||||||
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
||||||
|
|
||||||
|
if profile:
|
||||||
|
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
|
||||||
|
t = time_synchronized()
|
||||||
|
for _ in range(10):
|
||||||
|
_ = m(x)
|
||||||
|
dt.append((time_synchronized() - t) * 100)
|
||||||
|
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
|
||||||
|
|
||||||
|
x = m(x) # run
|
||||||
|
y.append(x if m.i in self.save else None) # save output
|
||||||
|
|
||||||
|
if profile:
|
||||||
|
print('%.1fms total' % sum(dt))
|
||||||
|
return x
|
||||||
|
|
||||||
|
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
||||||
|
# https://arxiv.org/abs/1708.02002 section 3.3
|
||||||
|
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
||||||
|
m = self.model[-1] # Detect() module
|
||||||
|
for mi, s in zip(m.m, m.stride): # from
|
||||||
|
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
||||||
|
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
||||||
|
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
||||||
|
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
||||||
|
|
||||||
|
def _print_biases(self):
|
||||||
|
m = self.model[-1] # Detect() module
|
||||||
|
for mi in m.m: # from
|
||||||
|
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
||||||
|
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
|
||||||
|
|
||||||
|
# def _print_weights(self):
|
||||||
|
# for m in self.model.modules():
|
||||||
|
# if type(m) is Bottleneck:
|
||||||
|
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
|
||||||
|
|
||||||
|
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
||||||
|
print('Fusing layers... ')
|
||||||
|
for m in self.model.modules():
|
||||||
|
if type(m) is Conv and hasattr(m, 'bn'):
|
||||||
|
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
||||||
|
delattr(m, 'bn') # remove batchnorm
|
||||||
|
m.forward = m.fuseforward # update forward
|
||||||
|
self.info()
|
||||||
|
return self
|
||||||
|
|
||||||
|
def nms(self, mode=True): # add or remove NMS module
|
||||||
|
present = type(self.model[-1]) is NMS # last layer is NMS
|
||||||
|
if mode and not present:
|
||||||
|
print('Adding NMS... ')
|
||||||
|
m = NMS() # module
|
||||||
|
m.f = -1 # from
|
||||||
|
m.i = self.model[-1].i + 1 # index
|
||||||
|
self.model.add_module(name='%s' % m.i, module=m) # add
|
||||||
|
self.eval()
|
||||||
|
elif not mode and present:
|
||||||
|
print('Removing NMS... ')
|
||||||
|
self.model = self.model[:-1] # remove
|
||||||
|
return self
|
||||||
|
|
||||||
|
def autoshape(self): # add autoShape module
|
||||||
|
print('Adding autoShape... ')
|
||||||
|
m = autoShape(self) # wrap model
|
||||||
|
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
|
||||||
|
return m
|
||||||
|
|
||||||
|
def info(self, verbose=False, img_size=640): # print model information
|
||||||
|
model_info(self, verbose, img_size)
|
||||||
|
|
||||||
|
|
||||||
|
def parse_model(d, ch): # model_dict, input_channels(3)
|
||||||
|
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
|
||||||
|
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
||||||
|
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
||||||
|
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
||||||
|
|
||||||
|
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
||||||
|
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
||||||
|
m = eval(m) if isinstance(m, str) else m # eval strings
|
||||||
|
for j, a in enumerate(args):
|
||||||
|
try:
|
||||||
|
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
||||||
|
if m in [Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, ShuffleV2Block, StemBlock, BlazeBlock, DoubleBlazeBlock]:
|
||||||
|
c1, c2 = ch[f], args[0]
|
||||||
|
|
||||||
|
# Normal
|
||||||
|
# if i > 0 and args[0] != no: # channel expansion factor
|
||||||
|
# ex = 1.75 # exponential (default 2.0)
|
||||||
|
# e = math.log(c2 / ch[1]) / math.log(2)
|
||||||
|
# c2 = int(ch[1] * ex ** e)
|
||||||
|
# if m != Focus:
|
||||||
|
|
||||||
|
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
|
||||||
|
|
||||||
|
# Experimental
|
||||||
|
# if i > 0 and args[0] != no: # channel expansion factor
|
||||||
|
# ex = 1 + gw # exponential (default 2.0)
|
||||||
|
# ch1 = 32 # ch[1]
|
||||||
|
# e = math.log(c2 / ch1) / math.log(2) # level 1-n
|
||||||
|
# c2 = int(ch1 * ex ** e)
|
||||||
|
# if m != Focus:
|
||||||
|
# c2 = make_divisible(c2, 8) if c2 != no else c2
|
||||||
|
|
||||||
|
args = [c1, c2, *args[1:]]
|
||||||
|
if m in [BottleneckCSP, C3]:
|
||||||
|
args.insert(2, n)
|
||||||
|
n = 1
|
||||||
|
elif m is nn.BatchNorm2d:
|
||||||
|
args = [ch[f]]
|
||||||
|
elif m is Concat:
|
||||||
|
c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])
|
||||||
|
elif m is Detect:
|
||||||
|
args.append([ch[x + 1] for x in f])
|
||||||
|
if isinstance(args[1], int): # number of anchors
|
||||||
|
args[1] = [list(range(args[1] * 2))] * len(f)
|
||||||
|
else:
|
||||||
|
c2 = ch[f]
|
||||||
|
|
||||||
|
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
|
||||||
|
t = str(m)[8:-2].replace('__main__.', '') # module type
|
||||||
|
np = sum([x.numel() for x in m_.parameters()]) # number params
|
||||||
|
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
||||||
|
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
|
||||||
|
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
||||||
|
layers.append(m_)
|
||||||
|
ch.append(c2)
|
||||||
|
return nn.Sequential(*layers), sorted(save)
|
||||||
|
|
||||||
|
|
||||||
|
from thop import profile
|
||||||
|
from thop import clever_format
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
|
||||||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
opt.cfg = check_file(opt.cfg) # check file
|
||||||
|
set_logging()
|
||||||
|
device = select_device(opt.device)
|
||||||
|
|
||||||
|
# Create model
|
||||||
|
model = Model(opt.cfg).to(device)
|
||||||
|
stride = model.stride.max()
|
||||||
|
if stride == 32:
|
||||||
|
input = torch.Tensor(1, 3, 480, 640).to(device)
|
||||||
|
else:
|
||||||
|
input = torch.Tensor(1, 3, 512, 640).to(device)
|
||||||
|
model.train()
|
||||||
|
print(model)
|
||||||
|
flops, params = profile(model, inputs=(input, ))
|
||||||
|
flops, params = clever_format([flops, params], "%.3f")
|
||||||
|
print('Flops:', flops, ',Params:' ,params)
|
||||||
36
yolov5-face_Jan1/requirements.txt
Executable file
36
yolov5-face_Jan1/requirements.txt
Executable file
@ -0,0 +1,36 @@
|
|||||||
|
# pip install -r requirements.txt
|
||||||
|
|
||||||
|
# Base ----------------------------------------
|
||||||
|
matplotlib>=3.2.2
|
||||||
|
numpy>=1.18.5
|
||||||
|
opencv-python>=4.1.2
|
||||||
|
Pillow>=7.1.2
|
||||||
|
PyYAML>=5.3.1
|
||||||
|
requests>=2.23.0
|
||||||
|
scipy>=1.4.1
|
||||||
|
torch>=1.7.0
|
||||||
|
torchvision>=0.8.1
|
||||||
|
tqdm>=4.41.0
|
||||||
|
|
||||||
|
# Logging -------------------------------------
|
||||||
|
tensorboard>=2.4.1
|
||||||
|
# wandb
|
||||||
|
|
||||||
|
# Plotting ------------------------------------
|
||||||
|
pandas>=1.1.4
|
||||||
|
seaborn>=0.11.0
|
||||||
|
|
||||||
|
# Export --------------------------------------
|
||||||
|
# coremltools>=4.1 # CoreML export
|
||||||
|
# onnx>=1.9.0 # ONNX export
|
||||||
|
# onnx-simplifier>=0.3.6 # ONNX simplifier
|
||||||
|
# scikit-learn==0.19.2 # CoreML quantization
|
||||||
|
# tensorflow>=2.4.1 # TFLite export
|
||||||
|
# tensorflowjs>=3.9.0 # TF.js export
|
||||||
|
|
||||||
|
# Extras --------------------------------------
|
||||||
|
# albumentations>=1.0.3
|
||||||
|
# Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
|
||||||
|
# pycocotools>=2.0 # COCO mAP
|
||||||
|
# roboflow
|
||||||
|
thop # FLOPs computation
|
||||||
Binary file not shown.
28
yolov5-face_Jan1/runs/train/exp/hyp.yaml
Normal file
28
yolov5-face_Jan1/runs/train/exp/hyp.yaml
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
lr0: 0.01
|
||||||
|
lrf: 0.2
|
||||||
|
momentum: 0.937
|
||||||
|
weight_decay: 0.0005
|
||||||
|
warmup_epochs: 3.0
|
||||||
|
warmup_momentum: 0.8
|
||||||
|
warmup_bias_lr: 0.1
|
||||||
|
box: 0.05
|
||||||
|
cls: 0.5
|
||||||
|
landmark: 0.005
|
||||||
|
cls_pw: 1.0
|
||||||
|
obj: 1.0
|
||||||
|
obj_pw: 1.0
|
||||||
|
iou_t: 0.2
|
||||||
|
anchor_t: 4.0
|
||||||
|
fl_gamma: 0.0
|
||||||
|
hsv_h: 0.015
|
||||||
|
hsv_s: 0.7
|
||||||
|
hsv_v: 0.4
|
||||||
|
degrees: 0.0
|
||||||
|
translate: 0.1
|
||||||
|
scale: 0.5
|
||||||
|
shear: 0.5
|
||||||
|
perspective: 0.0
|
||||||
|
flipud: 0.0
|
||||||
|
fliplr: 0.5
|
||||||
|
mosaic: 0.5
|
||||||
|
mixup: 0.0
|
||||||
34
yolov5-face_Jan1/runs/train/exp/opt.yaml
Normal file
34
yolov5-face_Jan1/runs/train/exp/opt.yaml
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
weights: pretrained models
|
||||||
|
cfg: models/yolov5s.yaml
|
||||||
|
data: data/widerface.yaml
|
||||||
|
hyp: data/hyp.scratch.yaml
|
||||||
|
epochs: 250
|
||||||
|
batch_size: 16
|
||||||
|
img_size:
|
||||||
|
- 800
|
||||||
|
- 800
|
||||||
|
rect: false
|
||||||
|
resume: false
|
||||||
|
nosave: false
|
||||||
|
notest: false
|
||||||
|
noautoanchor: false
|
||||||
|
evolve: false
|
||||||
|
bucket: ''
|
||||||
|
cache_images: false
|
||||||
|
image_weights: false
|
||||||
|
device: ''
|
||||||
|
multi_scale: false
|
||||||
|
single_cls: false
|
||||||
|
adam: false
|
||||||
|
sync_bn: false
|
||||||
|
local_rank: -1
|
||||||
|
log_imgs: 16
|
||||||
|
log_artifacts: false
|
||||||
|
workers: 4
|
||||||
|
project: runs/train
|
||||||
|
name: exp
|
||||||
|
exist_ok: false
|
||||||
|
total_batch_size: 16
|
||||||
|
world_size: 1
|
||||||
|
global_rank: -1
|
||||||
|
save_dir: runs/train/exp
|
||||||
BIN
yolov5-face_Jan1/runs/train/exp/weights/yolov5m6_face.pt
Normal file
BIN
yolov5-face_Jan1/runs/train/exp/weights/yolov5m6_face.pt
Normal file
Binary file not shown.
0
yolov5-face_Jan1/utils/__init__.py
Normal file
0
yolov5-face_Jan1/utils/__init__.py
Normal file
BIN
yolov5-face_Jan1/utils/__pycache__/__init__.cpython-310.pyc
Normal file
BIN
yolov5-face_Jan1/utils/__pycache__/__init__.cpython-310.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/utils/__pycache__/__init__.cpython-36.pyc
Normal file
BIN
yolov5-face_Jan1/utils/__pycache__/__init__.cpython-36.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/utils/__pycache__/autoanchor.cpython-310.pyc
Normal file
BIN
yolov5-face_Jan1/utils/__pycache__/autoanchor.cpython-310.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/utils/__pycache__/autoanchor.cpython-36.pyc
Normal file
BIN
yolov5-face_Jan1/utils/__pycache__/autoanchor.cpython-36.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/utils/__pycache__/datasets.cpython-310.pyc
Normal file
BIN
yolov5-face_Jan1/utils/__pycache__/datasets.cpython-310.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/utils/__pycache__/datasets.cpython-36.pyc
Normal file
BIN
yolov5-face_Jan1/utils/__pycache__/datasets.cpython-36.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/utils/__pycache__/general.cpython-310.pyc
Normal file
BIN
yolov5-face_Jan1/utils/__pycache__/general.cpython-310.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/utils/__pycache__/general.cpython-36.pyc
Normal file
BIN
yolov5-face_Jan1/utils/__pycache__/general.cpython-36.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/utils/__pycache__/google_utils.cpython-310.pyc
Normal file
BIN
yolov5-face_Jan1/utils/__pycache__/google_utils.cpython-310.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/utils/__pycache__/google_utils.cpython-36.pyc
Normal file
BIN
yolov5-face_Jan1/utils/__pycache__/google_utils.cpython-36.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/utils/__pycache__/metrics.cpython-310.pyc
Normal file
BIN
yolov5-face_Jan1/utils/__pycache__/metrics.cpython-310.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/utils/__pycache__/metrics.cpython-36.pyc
Normal file
BIN
yolov5-face_Jan1/utils/__pycache__/metrics.cpython-36.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/utils/__pycache__/plots.cpython-310.pyc
Normal file
BIN
yolov5-face_Jan1/utils/__pycache__/plots.cpython-310.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/utils/__pycache__/plots.cpython-36.pyc
Normal file
BIN
yolov5-face_Jan1/utils/__pycache__/plots.cpython-36.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/utils/__pycache__/torch_utils.cpython-310.pyc
Normal file
BIN
yolov5-face_Jan1/utils/__pycache__/torch_utils.cpython-310.pyc
Normal file
Binary file not shown.
BIN
yolov5-face_Jan1/utils/__pycache__/torch_utils.cpython-36.pyc
Normal file
BIN
yolov5-face_Jan1/utils/__pycache__/torch_utils.cpython-36.pyc
Normal file
Binary file not shown.
72
yolov5-face_Jan1/utils/activations.py
Normal file
72
yolov5-face_Jan1/utils/activations.py
Normal file
@ -0,0 +1,72 @@
|
|||||||
|
# Activation functions
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
|
||||||
|
class SiLU(nn.Module): # export-friendly version of nn.SiLU()
|
||||||
|
@staticmethod
|
||||||
|
def forward(x):
|
||||||
|
return x * torch.sigmoid(x)
|
||||||
|
|
||||||
|
|
||||||
|
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
|
||||||
|
@staticmethod
|
||||||
|
def forward(x):
|
||||||
|
# return x * F.hardsigmoid(x) # for torchscript and CoreML
|
||||||
|
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
|
||||||
|
|
||||||
|
|
||||||
|
class MemoryEfficientSwish(nn.Module):
|
||||||
|
class F(torch.autograd.Function):
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, x):
|
||||||
|
ctx.save_for_backward(x)
|
||||||
|
return x * torch.sigmoid(x)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, grad_output):
|
||||||
|
x = ctx.saved_tensors[0]
|
||||||
|
sx = torch.sigmoid(x)
|
||||||
|
return grad_output * (sx * (1 + x * (1 - sx)))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.F.apply(x)
|
||||||
|
|
||||||
|
|
||||||
|
# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
|
||||||
|
class Mish(nn.Module):
|
||||||
|
@staticmethod
|
||||||
|
def forward(x):
|
||||||
|
return x * F.softplus(x).tanh()
|
||||||
|
|
||||||
|
|
||||||
|
class MemoryEfficientMish(nn.Module):
|
||||||
|
class F(torch.autograd.Function):
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, x):
|
||||||
|
ctx.save_for_backward(x)
|
||||||
|
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, grad_output):
|
||||||
|
x = ctx.saved_tensors[0]
|
||||||
|
sx = torch.sigmoid(x)
|
||||||
|
fx = F.softplus(x).tanh()
|
||||||
|
return grad_output * (fx + x * sx * (1 - fx * fx))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.F.apply(x)
|
||||||
|
|
||||||
|
|
||||||
|
# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
|
||||||
|
class FReLU(nn.Module):
|
||||||
|
def __init__(self, c1, k=3): # ch_in, kernel
|
||||||
|
super().__init__()
|
||||||
|
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
|
||||||
|
self.bn = nn.BatchNorm2d(c1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return torch.max(x, self.bn(self.conv(x)))
|
||||||
155
yolov5-face_Jan1/utils/autoanchor.py
Normal file
155
yolov5-face_Jan1/utils/autoanchor.py
Normal file
@ -0,0 +1,155 @@
|
|||||||
|
# Auto-anchor utils
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import yaml
|
||||||
|
from scipy.cluster.vq import kmeans
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from utils.general import colorstr
|
||||||
|
|
||||||
|
|
||||||
|
def check_anchor_order(m):
|
||||||
|
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
||||||
|
a = m.anchor_grid.prod(-1).view(-1) # anchor area
|
||||||
|
da = a[-1] - a[0] # delta a
|
||||||
|
ds = m.stride[-1] - m.stride[0] # delta s
|
||||||
|
if da.sign() != ds.sign(): # same order
|
||||||
|
print('Reversing anchor order')
|
||||||
|
m.anchors[:] = m.anchors.flip(0)
|
||||||
|
m.anchor_grid[:] = m.anchor_grid.flip(0)
|
||||||
|
|
||||||
|
|
||||||
|
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
||||||
|
# Check anchor fit to data, recompute if necessary
|
||||||
|
prefix = colorstr('autoanchor: ')
|
||||||
|
print(f'\n{prefix}Analyzing anchors... ', end='')
|
||||||
|
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
||||||
|
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||||
|
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
||||||
|
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
||||||
|
|
||||||
|
def metric(k): # compute metric
|
||||||
|
r = wh[:, None] / k[None]
|
||||||
|
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
||||||
|
best = x.max(1)[0] # best_x
|
||||||
|
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
|
||||||
|
bpr = (best > 1. / thr).float().mean() # best possible recall
|
||||||
|
return bpr, aat
|
||||||
|
|
||||||
|
bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
|
||||||
|
print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
|
||||||
|
if bpr < 0.98: # threshold to recompute
|
||||||
|
print('. Attempting to improve anchors, please wait...')
|
||||||
|
na = m.anchor_grid.numel() // 2 # number of anchors
|
||||||
|
new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
||||||
|
new_bpr = metric(new_anchors.reshape(-1, 2))[0]
|
||||||
|
if new_bpr > bpr: # replace anchors
|
||||||
|
new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)
|
||||||
|
m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference
|
||||||
|
m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
|
||||||
|
check_anchor_order(m)
|
||||||
|
print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
|
||||||
|
else:
|
||||||
|
print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
|
||||||
|
print('') # newline
|
||||||
|
|
||||||
|
|
||||||
|
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
||||||
|
""" Creates kmeans-evolved anchors from training dataset
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
path: path to dataset *.yaml, or a loaded dataset
|
||||||
|
n: number of anchors
|
||||||
|
img_size: image size used for training
|
||||||
|
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
||||||
|
gen: generations to evolve anchors using genetic algorithm
|
||||||
|
verbose: print all results
|
||||||
|
|
||||||
|
Return:
|
||||||
|
k: kmeans evolved anchors
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
from utils.autoanchor import *; _ = kmean_anchors()
|
||||||
|
"""
|
||||||
|
thr = 1. / thr
|
||||||
|
prefix = colorstr('autoanchor: ')
|
||||||
|
|
||||||
|
def metric(k, wh): # compute metrics
|
||||||
|
r = wh[:, None] / k[None]
|
||||||
|
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
||||||
|
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
||||||
|
return x, x.max(1)[0] # x, best_x
|
||||||
|
|
||||||
|
def anchor_fitness(k): # mutation fitness
|
||||||
|
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
||||||
|
return (best * (best > thr).float()).mean() # fitness
|
||||||
|
|
||||||
|
def print_results(k):
|
||||||
|
k = k[np.argsort(k.prod(1))] # sort small to large
|
||||||
|
x, best = metric(k, wh0)
|
||||||
|
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
||||||
|
print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
|
||||||
|
print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
|
||||||
|
f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
|
||||||
|
for i, x in enumerate(k):
|
||||||
|
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
|
||||||
|
return k
|
||||||
|
|
||||||
|
if isinstance(path, str): # *.yaml file
|
||||||
|
with open(path) as f:
|
||||||
|
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
|
||||||
|
from utils.datasets import LoadImagesAndLabels
|
||||||
|
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
||||||
|
else:
|
||||||
|
dataset = path # dataset
|
||||||
|
|
||||||
|
# Get label wh
|
||||||
|
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||||
|
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
||||||
|
|
||||||
|
# Filter
|
||||||
|
i = (wh0 < 3.0).any(1).sum()
|
||||||
|
if i:
|
||||||
|
print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
|
||||||
|
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
|
||||||
|
# wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
|
||||||
|
|
||||||
|
# Kmeans calculation
|
||||||
|
print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
|
||||||
|
s = wh.std(0) # sigmas for whitening
|
||||||
|
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
|
||||||
|
k *= s
|
||||||
|
wh = torch.tensor(wh, dtype=torch.float32) # filtered
|
||||||
|
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
|
||||||
|
k = print_results(k)
|
||||||
|
|
||||||
|
# Plot
|
||||||
|
# k, d = [None] * 20, [None] * 20
|
||||||
|
# for i in tqdm(range(1, 21)):
|
||||||
|
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
||||||
|
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
|
||||||
|
# ax = ax.ravel()
|
||||||
|
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
||||||
|
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
||||||
|
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
||||||
|
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
||||||
|
# fig.savefig('wh.png', dpi=200)
|
||||||
|
|
||||||
|
# Evolve
|
||||||
|
npr = np.random
|
||||||
|
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
||||||
|
pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
|
||||||
|
for _ in pbar:
|
||||||
|
v = np.ones(sh)
|
||||||
|
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
||||||
|
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
||||||
|
kg = (k.copy() * v).clip(min=2.0)
|
||||||
|
fg = anchor_fitness(kg)
|
||||||
|
if fg > f:
|
||||||
|
f, k = fg, kg.copy()
|
||||||
|
pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
|
||||||
|
if verbose:
|
||||||
|
print_results(k)
|
||||||
|
|
||||||
|
return print_results(k)
|
||||||
1019
yolov5-face_Jan1/utils/datasets.py
Executable file
1019
yolov5-face_Jan1/utils/datasets.py
Executable file
File diff suppressed because it is too large
Load Diff
834
yolov5-face_Jan1/utils/face_datasets.py
Executable file
834
yolov5-face_Jan1/utils/face_datasets.py
Executable file
@ -0,0 +1,834 @@
|
|||||||
|
import glob
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
import shutil
|
||||||
|
import time
|
||||||
|
from itertools import repeat
|
||||||
|
from multiprocessing.pool import ThreadPool
|
||||||
|
from pathlib import Path
|
||||||
|
from threading import Thread
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from PIL import Image, ExifTags
|
||||||
|
from torch.utils.data import Dataset
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from utils.general import xyxy2xywh, xywh2xyxy, clean_str
|
||||||
|
from utils.torch_utils import torch_distributed_zero_first
|
||||||
|
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
||||||
|
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
|
||||||
|
vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
# Get orientation exif tag
|
||||||
|
for orientation in ExifTags.TAGS.keys():
|
||||||
|
if ExifTags.TAGS[orientation] == 'Orientation':
|
||||||
|
break
|
||||||
|
|
||||||
|
def get_hash(files):
|
||||||
|
# Returns a single hash value of a list of files
|
||||||
|
return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
|
||||||
|
|
||||||
|
def img2label_paths(img_paths):
|
||||||
|
# Define label paths as a function of image paths
|
||||||
|
sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
|
||||||
|
return [x.replace(sa, sb, 1).replace('.' + x.split('.')[-1], '.txt') for x in img_paths]
|
||||||
|
|
||||||
|
def exif_size(img):
|
||||||
|
# Returns exif-corrected PIL size
|
||||||
|
s = img.size # (width, height)
|
||||||
|
try:
|
||||||
|
rotation = dict(img._getexif().items())[orientation]
|
||||||
|
if rotation == 6: # rotation 270
|
||||||
|
s = (s[1], s[0])
|
||||||
|
elif rotation == 8: # rotation 90
|
||||||
|
s = (s[1], s[0])
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
return s
|
||||||
|
|
||||||
|
def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
|
||||||
|
rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
|
||||||
|
# Make sure only the first process in DDP process the dataset first, and the following others can use the cache
|
||||||
|
with torch_distributed_zero_first(rank):
|
||||||
|
dataset = LoadFaceImagesAndLabels(path, imgsz, batch_size,
|
||||||
|
augment=augment, # augment images
|
||||||
|
hyp=hyp, # augmentation hyperparameters
|
||||||
|
rect=rect, # rectangular training
|
||||||
|
cache_images=cache,
|
||||||
|
single_cls=opt.single_cls,
|
||||||
|
stride=int(stride),
|
||||||
|
pad=pad,
|
||||||
|
image_weights=image_weights,
|
||||||
|
)
|
||||||
|
|
||||||
|
batch_size = min(batch_size, len(dataset))
|
||||||
|
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
|
||||||
|
sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
|
||||||
|
loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
|
||||||
|
# Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
|
||||||
|
dataloader = loader(dataset,
|
||||||
|
batch_size=batch_size,
|
||||||
|
num_workers=nw,
|
||||||
|
sampler=sampler,
|
||||||
|
pin_memory=True,
|
||||||
|
collate_fn=LoadFaceImagesAndLabels.collate_fn4 if quad else LoadFaceImagesAndLabels.collate_fn)
|
||||||
|
return dataloader, dataset
|
||||||
|
class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
|
||||||
|
""" Dataloader that reuses workers
|
||||||
|
|
||||||
|
Uses same syntax as vanilla DataLoader
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
|
||||||
|
self.iterator = super().__iter__()
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.batch_sampler.sampler)
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
for i in range(len(self)):
|
||||||
|
yield next(self.iterator)
|
||||||
|
class _RepeatSampler(object):
|
||||||
|
""" Sampler that repeats forever
|
||||||
|
|
||||||
|
Args:
|
||||||
|
sampler (Sampler)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, sampler):
|
||||||
|
self.sampler = sampler
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
while True:
|
||||||
|
yield from iter(self.sampler)
|
||||||
|
|
||||||
|
class LoadFaceImagesAndLabels(Dataset): # for training/testing
|
||||||
|
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
|
||||||
|
cache_images=False, single_cls=False, stride=32, pad=0.0, rank=-1):
|
||||||
|
self.img_size = img_size
|
||||||
|
self.augment = augment
|
||||||
|
self.hyp = hyp
|
||||||
|
self.image_weights = image_weights
|
||||||
|
self.rect = False if image_weights else rect
|
||||||
|
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
|
||||||
|
self.mosaic_border = [-img_size // 2, -img_size // 2]
|
||||||
|
self.stride = stride
|
||||||
|
|
||||||
|
try:
|
||||||
|
f = [] # image files
|
||||||
|
for p in path if isinstance(path, list) else [path]:
|
||||||
|
p = Path(p) # os-agnostic
|
||||||
|
if p.is_dir(): # dir
|
||||||
|
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
|
||||||
|
elif p.is_file(): # file
|
||||||
|
with open(p, 'r') as t:
|
||||||
|
t = t.read().strip().splitlines()
|
||||||
|
parent = str(p.parent) + os.sep
|
||||||
|
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
|
||||||
|
else:
|
||||||
|
raise Exception('%s does not exist' % p)
|
||||||
|
self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
|
||||||
|
assert self.img_files, 'No images found'
|
||||||
|
except Exception as e:
|
||||||
|
raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
|
||||||
|
|
||||||
|
# Check cache
|
||||||
|
self.label_files = img2label_paths(self.img_files) # labels
|
||||||
|
cache_path = Path(self.label_files[0]).parent.with_suffix('.cache') # cached labels
|
||||||
|
if cache_path.is_file():
|
||||||
|
cache = torch.load(cache_path) # load
|
||||||
|
if cache['hash'] != get_hash(self.label_files + self.img_files) or 'results' not in cache: # changed
|
||||||
|
cache = self.cache_labels(cache_path) # re-cache
|
||||||
|
else:
|
||||||
|
cache = self.cache_labels(cache_path) # cache
|
||||||
|
|
||||||
|
# Display cache
|
||||||
|
[nf, nm, ne, nc, n] = cache.pop('results') # found, missing, empty, corrupted, total
|
||||||
|
desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
|
||||||
|
tqdm(None, desc=desc, total=n, initial=n)
|
||||||
|
assert nf > 0 or not augment, f'No labels found in {cache_path}. Can not train without labels. See {help_url}'
|
||||||
|
|
||||||
|
# Read cache
|
||||||
|
cache.pop('hash') # remove hash
|
||||||
|
labels, shapes = zip(*cache.values())
|
||||||
|
self.labels = list(labels)
|
||||||
|
self.shapes = np.array(shapes, dtype=np.float64)
|
||||||
|
self.img_files = list(cache.keys()) # update
|
||||||
|
self.label_files = img2label_paths(cache.keys()) # update
|
||||||
|
if single_cls:
|
||||||
|
for x in self.labels:
|
||||||
|
x[:, 0] = 0
|
||||||
|
|
||||||
|
n = len(shapes) # number of images
|
||||||
|
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
|
||||||
|
nb = bi[-1] + 1 # number of batches
|
||||||
|
self.batch = bi # batch index of image
|
||||||
|
self.n = n
|
||||||
|
self.indices = range(n)
|
||||||
|
|
||||||
|
# Rectangular Training
|
||||||
|
if self.rect:
|
||||||
|
# Sort by aspect ratio
|
||||||
|
s = self.shapes # wh
|
||||||
|
ar = s[:, 1] / s[:, 0] # aspect ratio
|
||||||
|
irect = ar.argsort()
|
||||||
|
self.img_files = [self.img_files[i] for i in irect]
|
||||||
|
self.label_files = [self.label_files[i] for i in irect]
|
||||||
|
self.labels = [self.labels[i] for i in irect]
|
||||||
|
self.shapes = s[irect] # wh
|
||||||
|
ar = ar[irect]
|
||||||
|
|
||||||
|
# Set training image shapes
|
||||||
|
shapes = [[1, 1]] * nb
|
||||||
|
for i in range(nb):
|
||||||
|
ari = ar[bi == i]
|
||||||
|
mini, maxi = ari.min(), ari.max()
|
||||||
|
if maxi < 1:
|
||||||
|
shapes[i] = [maxi, 1]
|
||||||
|
elif mini > 1:
|
||||||
|
shapes[i] = [1, 1 / mini]
|
||||||
|
|
||||||
|
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
|
||||||
|
|
||||||
|
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
|
||||||
|
self.imgs = [None] * n
|
||||||
|
if cache_images:
|
||||||
|
gb = 0 # Gigabytes of cached images
|
||||||
|
self.img_hw0, self.img_hw = [None] * n, [None] * n
|
||||||
|
results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads
|
||||||
|
pbar = tqdm(enumerate(results), total=n)
|
||||||
|
for i, x in pbar:
|
||||||
|
self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
|
||||||
|
gb += self.imgs[i].nbytes
|
||||||
|
pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
|
||||||
|
|
||||||
|
def cache_labels(self, path=Path('./labels.cache')):
|
||||||
|
# Cache dataset labels, check images and read shapes
|
||||||
|
x = {} # dict
|
||||||
|
nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
|
||||||
|
pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
|
||||||
|
for i, (im_file, lb_file) in enumerate(pbar):
|
||||||
|
try:
|
||||||
|
# verify images
|
||||||
|
im = Image.open(im_file)
|
||||||
|
im.verify() # PIL verify
|
||||||
|
shape = exif_size(im) # image size
|
||||||
|
assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
|
||||||
|
|
||||||
|
# verify labels
|
||||||
|
if os.path.isfile(lb_file):
|
||||||
|
nf += 1 # label found
|
||||||
|
with open(lb_file, 'r') as f:
|
||||||
|
l = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
|
||||||
|
if len(l):
|
||||||
|
assert l.shape[1] == 15, 'labels require 15 columns each'
|
||||||
|
assert (l >= -1).all(), 'negative labels'
|
||||||
|
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
|
||||||
|
assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
|
||||||
|
else:
|
||||||
|
ne += 1 # label empty
|
||||||
|
l = np.zeros((0, 15), dtype=np.float32)
|
||||||
|
else:
|
||||||
|
nm += 1 # label missing
|
||||||
|
l = np.zeros((0, 15), dtype=np.float32)
|
||||||
|
x[im_file] = [l, shape]
|
||||||
|
except Exception as e:
|
||||||
|
nc += 1
|
||||||
|
print('WARNING: Ignoring corrupted image and/or label %s: %s' % (im_file, e))
|
||||||
|
|
||||||
|
pbar.desc = f"Scanning '{path.parent / path.stem}' for images and labels... " \
|
||||||
|
f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
|
||||||
|
|
||||||
|
if nf == 0:
|
||||||
|
print(f'WARNING: No labels found in {path}. See {help_url}')
|
||||||
|
|
||||||
|
x['hash'] = get_hash(self.label_files + self.img_files)
|
||||||
|
x['results'] = [nf, nm, ne, nc, i + 1]
|
||||||
|
torch.save(x, path) # save for next time
|
||||||
|
logging.info(f"New cache created: {path}")
|
||||||
|
return x
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.img_files)
|
||||||
|
|
||||||
|
# def __iter__(self):
|
||||||
|
# self.count = -1
|
||||||
|
# print('ran dataset iter')
|
||||||
|
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
||||||
|
# return self
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
index = self.indices[index] # linear, shuffled, or image_weights
|
||||||
|
|
||||||
|
hyp = self.hyp
|
||||||
|
mosaic = self.mosaic and random.random() < hyp['mosaic']
|
||||||
|
if mosaic:
|
||||||
|
# Load mosaic
|
||||||
|
img, labels = load_mosaic_face(self, index)
|
||||||
|
shapes = None
|
||||||
|
|
||||||
|
# MixUp https://arxiv.org/pdf/1710.09412.pdf
|
||||||
|
if random.random() < hyp['mixup']:
|
||||||
|
img2, labels2 = load_mosaic_face(self, random.randint(0, self.n - 1))
|
||||||
|
r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
|
||||||
|
img = (img * r + img2 * (1 - r)).astype(np.uint8)
|
||||||
|
labels = np.concatenate((labels, labels2), 0)
|
||||||
|
|
||||||
|
else:
|
||||||
|
# Load image
|
||||||
|
img, (h0, w0), (h, w) = load_image(self, index)
|
||||||
|
|
||||||
|
# Letterbox
|
||||||
|
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
|
||||||
|
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
||||||
|
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
||||||
|
|
||||||
|
# Load labels
|
||||||
|
labels = []
|
||||||
|
x = self.labels[index]
|
||||||
|
if x.size > 0:
|
||||||
|
# Normalized xywh to pixel xyxy format
|
||||||
|
labels = x.copy()
|
||||||
|
labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
|
||||||
|
labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
|
||||||
|
labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
|
||||||
|
labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
|
||||||
|
|
||||||
|
#labels[:, 5] = ratio[0] * w * x[:, 5] + pad[0] # pad width
|
||||||
|
labels[:, 5] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 5] + pad[0]) + (
|
||||||
|
np.array(x[:, 5] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 6] = np.array(x[:, 6] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 6] + pad[1]) + (
|
||||||
|
np.array(x[:, 6] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 7] = np.array(x[:, 7] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 7] + pad[0]) + (
|
||||||
|
np.array(x[:, 7] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 8] = np.array(x[:, 8] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 8] + pad[1]) + (
|
||||||
|
np.array(x[:, 8] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 9] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 9] + pad[0]) + (
|
||||||
|
np.array(x[:, 9] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 10] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 10] + pad[1]) + (
|
||||||
|
np.array(x[:, 10] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 11] = np.array(x[:, 11] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 11] + pad[0]) + (
|
||||||
|
np.array(x[:, 11] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 12] = np.array(x[:, 12] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 12] + pad[1]) + (
|
||||||
|
np.array(x[:, 12] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 13] = np.array(x[:, 13] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 13] + pad[0]) + (
|
||||||
|
np.array(x[:, 13] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 14] = np.array(x[:, 14] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 14] + pad[1]) + (
|
||||||
|
np.array(x[:, 14] > 0, dtype=np.int32) - 1)
|
||||||
|
|
||||||
|
if self.augment:
|
||||||
|
# Augment imagespace
|
||||||
|
if not mosaic:
|
||||||
|
img, labels = random_perspective(img, labels,
|
||||||
|
degrees=hyp['degrees'],
|
||||||
|
translate=hyp['translate'],
|
||||||
|
scale=hyp['scale'],
|
||||||
|
shear=hyp['shear'],
|
||||||
|
perspective=hyp['perspective'])
|
||||||
|
|
||||||
|
# Augment colorspace
|
||||||
|
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
|
||||||
|
|
||||||
|
# Apply cutouts
|
||||||
|
# if random.random() < 0.9:
|
||||||
|
# labels = cutout(img, labels)
|
||||||
|
|
||||||
|
nL = len(labels) # number of labels
|
||||||
|
if nL:
|
||||||
|
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
|
||||||
|
labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
|
||||||
|
labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
|
||||||
|
|
||||||
|
labels[:, [5, 7, 9, 11, 13]] /= img.shape[1] # normalized landmark x 0-1
|
||||||
|
labels[:, [5, 7, 9, 11, 13]] = np.where(labels[:, [5, 7, 9, 11, 13]] < 0, -1, labels[:, [5, 7, 9, 11, 13]])
|
||||||
|
labels[:, [6, 8, 10, 12, 14]] /= img.shape[0] # normalized landmark y 0-1
|
||||||
|
labels[:, [6, 8, 10, 12, 14]] = np.where(labels[:, [6, 8, 10, 12, 14]] < 0, -1, labels[:, [6, 8, 10, 12, 14]])
|
||||||
|
|
||||||
|
if self.augment:
|
||||||
|
# flip up-down
|
||||||
|
if random.random() < hyp['flipud']:
|
||||||
|
img = np.flipud(img)
|
||||||
|
if nL:
|
||||||
|
labels[:, 2] = 1 - labels[:, 2]
|
||||||
|
|
||||||
|
labels[:, 6] = np.where(labels[:,6] < 0, -1, 1 - labels[:, 6])
|
||||||
|
labels[:, 8] = np.where(labels[:, 8] < 0, -1, 1 - labels[:, 8])
|
||||||
|
labels[:, 10] = np.where(labels[:, 10] < 0, -1, 1 - labels[:, 10])
|
||||||
|
labels[:, 12] = np.where(labels[:, 12] < 0, -1, 1 - labels[:, 12])
|
||||||
|
labels[:, 14] = np.where(labels[:, 14] < 0, -1, 1 - labels[:, 14])
|
||||||
|
|
||||||
|
# flip left-right
|
||||||
|
if random.random() < hyp['fliplr']:
|
||||||
|
img = np.fliplr(img)
|
||||||
|
if nL:
|
||||||
|
labels[:, 1] = 1 - labels[:, 1]
|
||||||
|
|
||||||
|
labels[:, 5] = np.where(labels[:, 5] < 0, -1, 1 - labels[:, 5])
|
||||||
|
labels[:, 7] = np.where(labels[:, 7] < 0, -1, 1 - labels[:, 7])
|
||||||
|
labels[:, 9] = np.where(labels[:, 9] < 0, -1, 1 - labels[:, 9])
|
||||||
|
labels[:, 11] = np.where(labels[:, 11] < 0, -1, 1 - labels[:, 11])
|
||||||
|
labels[:, 13] = np.where(labels[:, 13] < 0, -1, 1 - labels[:, 13])
|
||||||
|
|
||||||
|
#左右镜像的时候,左眼、右眼, 左嘴角、右嘴角无法区分, 应该交换位置,便于网络学习
|
||||||
|
eye_left = np.copy(labels[:, [5, 6]])
|
||||||
|
mouth_left = np.copy(labels[:, [11, 12]])
|
||||||
|
labels[:, [5, 6]] = labels[:, [7, 8]]
|
||||||
|
labels[:, [7, 8]] = eye_left
|
||||||
|
labels[:, [11, 12]] = labels[:, [13, 14]]
|
||||||
|
labels[:, [13, 14]] = mouth_left
|
||||||
|
|
||||||
|
labels_out = torch.zeros((nL, 16))
|
||||||
|
if nL:
|
||||||
|
labels_out[:, 1:] = torch.from_numpy(labels)
|
||||||
|
#showlabels(img, labels[:, 1:5], labels[:, 5:15])
|
||||||
|
|
||||||
|
# Convert
|
||||||
|
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
||||||
|
img = np.ascontiguousarray(img)
|
||||||
|
#print(index, ' --- labels_out: ', labels_out)
|
||||||
|
#if nL:
|
||||||
|
#print( ' : landmarks : ', torch.max(labels_out[:, 5:15]), ' --- ', torch.min(labels_out[:, 5:15]))
|
||||||
|
return torch.from_numpy(img), labels_out, self.img_files[index], shapes
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def collate_fn(batch):
|
||||||
|
img, label, path, shapes = zip(*batch) # transposed
|
||||||
|
for i, l in enumerate(label):
|
||||||
|
l[:, 0] = i # add target image index for build_targets()
|
||||||
|
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
|
||||||
|
|
||||||
|
|
||||||
|
def showlabels(img, boxs, landmarks):
|
||||||
|
for box in boxs:
|
||||||
|
x,y,w,h = box[0] * img.shape[1], box[1] * img.shape[0], box[2] * img.shape[1], box[3] * img.shape[0]
|
||||||
|
#cv2.rectangle(image, (x,y), (x+w,y+h), (0,255,0), 2)
|
||||||
|
cv2.rectangle(img, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2)
|
||||||
|
|
||||||
|
for landmark in landmarks:
|
||||||
|
#cv2.circle(img,(60,60),30,(0,0,255))
|
||||||
|
for i in range(5):
|
||||||
|
cv2.circle(img, (int(landmark[2*i] * img.shape[1]), int(landmark[2*i+1]*img.shape[0])), 3 ,(0,0,255), -1)
|
||||||
|
cv2.imshow('test', img)
|
||||||
|
cv2.waitKey(0)
|
||||||
|
|
||||||
|
|
||||||
|
def load_mosaic_face(self, index):
|
||||||
|
# loads images in a mosaic
|
||||||
|
labels4 = []
|
||||||
|
s = self.img_size
|
||||||
|
yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
|
||||||
|
indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] # 3 additional image indices
|
||||||
|
for i, index in enumerate(indices):
|
||||||
|
# Load image
|
||||||
|
img, _, (h, w) = load_image(self, index)
|
||||||
|
|
||||||
|
# place img in img4
|
||||||
|
if i == 0: # top left
|
||||||
|
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
||||||
|
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
||||||
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
||||||
|
elif i == 1: # top right
|
||||||
|
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
||||||
|
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
||||||
|
elif i == 2: # bottom left
|
||||||
|
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
||||||
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
||||||
|
elif i == 3: # bottom right
|
||||||
|
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
||||||
|
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
||||||
|
|
||||||
|
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
||||||
|
padw = x1a - x1b
|
||||||
|
padh = y1a - y1b
|
||||||
|
|
||||||
|
# Labels
|
||||||
|
x = self.labels[index]
|
||||||
|
labels = x.copy()
|
||||||
|
if x.size > 0: # Normalized xywh to pixel xyxy format
|
||||||
|
#box, x1,y1,x2,y2
|
||||||
|
labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
|
||||||
|
labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
|
||||||
|
labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
|
||||||
|
labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
|
||||||
|
#10 landmarks
|
||||||
|
|
||||||
|
labels[:, 5] = np.array(x[:, 5] > 0, dtype=np.int32) * (w * x[:, 5] + padw) + (np.array(x[:, 5] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 6] = np.array(x[:, 6] > 0, dtype=np.int32) * (h * x[:, 6] + padh) + (np.array(x[:, 6] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 7] = np.array(x[:, 7] > 0, dtype=np.int32) * (w * x[:, 7] + padw) + (np.array(x[:, 7] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 8] = np.array(x[:, 8] > 0, dtype=np.int32) * (h * x[:, 8] + padh) + (np.array(x[:, 8] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 9] = np.array(x[:, 9] > 0, dtype=np.int32) * (w * x[:, 9] + padw) + (np.array(x[:, 9] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 10] = np.array(x[:, 10] > 0, dtype=np.int32) * (h * x[:, 10] + padh) + (np.array(x[:, 10] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 11] = np.array(x[:, 11] > 0, dtype=np.int32) * (w * x[:, 11] + padw) + (np.array(x[:, 11] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 12] = np.array(x[:, 12] > 0, dtype=np.int32) * (h * x[:, 12] + padh) + (np.array(x[:, 12] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 13] = np.array(x[:, 13] > 0, dtype=np.int32) * (w * x[:, 13] + padw) + (np.array(x[:, 13] > 0, dtype=np.int32) - 1)
|
||||||
|
labels[:, 14] = np.array(x[:, 14] > 0, dtype=np.int32) * (h * x[:, 14] + padh) + (np.array(x[:, 14] > 0, dtype=np.int32) - 1)
|
||||||
|
labels4.append(labels)
|
||||||
|
|
||||||
|
# Concat/clip labels
|
||||||
|
if len(labels4):
|
||||||
|
labels4 = np.concatenate(labels4, 0)
|
||||||
|
np.clip(labels4[:, 1:5], 0, 2 * s, out=labels4[:, 1:5]) # use with random_perspective
|
||||||
|
# img4, labels4 = replicate(img4, labels4) # replicate
|
||||||
|
|
||||||
|
#landmarks
|
||||||
|
labels4[:, 5:] = np.where(labels4[:, 5:] < 0, -1, labels4[:, 5:])
|
||||||
|
labels4[:, 5:] = np.where(labels4[:, 5:] > 2 * s, -1, labels4[:, 5:])
|
||||||
|
|
||||||
|
labels4[:, 5] = np.where(labels4[:, 6] == -1, -1, labels4[:, 5])
|
||||||
|
labels4[:, 6] = np.where(labels4[:, 5] == -1, -1, labels4[:, 6])
|
||||||
|
|
||||||
|
labels4[:, 7] = np.where(labels4[:, 8] == -1, -1, labels4[:, 7])
|
||||||
|
labels4[:, 8] = np.where(labels4[:, 7] == -1, -1, labels4[:, 8])
|
||||||
|
|
||||||
|
labels4[:, 9] = np.where(labels4[:, 10] == -1, -1, labels4[:, 9])
|
||||||
|
labels4[:, 10] = np.where(labels4[:, 9] == -1, -1, labels4[:, 10])
|
||||||
|
|
||||||
|
labels4[:, 11] = np.where(labels4[:, 12] == -1, -1, labels4[:, 11])
|
||||||
|
labels4[:, 12] = np.where(labels4[:, 11] == -1, -1, labels4[:, 12])
|
||||||
|
|
||||||
|
labels4[:, 13] = np.where(labels4[:, 14] == -1, -1, labels4[:, 13])
|
||||||
|
labels4[:, 14] = np.where(labels4[:, 13] == -1, -1, labels4[:, 14])
|
||||||
|
|
||||||
|
# Augment
|
||||||
|
img4, labels4 = random_perspective(img4, labels4,
|
||||||
|
degrees=self.hyp['degrees'],
|
||||||
|
translate=self.hyp['translate'],
|
||||||
|
scale=self.hyp['scale'],
|
||||||
|
shear=self.hyp['shear'],
|
||||||
|
perspective=self.hyp['perspective'],
|
||||||
|
border=self.mosaic_border) # border to remove
|
||||||
|
return img4, labels4
|
||||||
|
|
||||||
|
|
||||||
|
# Ancillary functions --------------------------------------------------------------------------------------------------
|
||||||
|
def load_image(self, index):
|
||||||
|
# loads 1 image from dataset, returns img, original hw, resized hw
|
||||||
|
img = self.imgs[index]
|
||||||
|
if img is None: # not cached
|
||||||
|
path = self.img_files[index]
|
||||||
|
img = cv2.imread(path) # BGR
|
||||||
|
assert img is not None, 'Image Not Found ' + path
|
||||||
|
h0, w0 = img.shape[:2] # orig hw
|
||||||
|
r = self.img_size / max(h0, w0) # resize image to img_size
|
||||||
|
if r != 1: # always resize down, only resize up if training with augmentation
|
||||||
|
interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
|
||||||
|
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
|
||||||
|
return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
|
||||||
|
else:
|
||||||
|
return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
|
||||||
|
|
||||||
|
|
||||||
|
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
|
||||||
|
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
||||||
|
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
|
||||||
|
dtype = img.dtype # uint8
|
||||||
|
|
||||||
|
x = np.arange(0, 256, dtype=np.int16)
|
||||||
|
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
||||||
|
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
||||||
|
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
||||||
|
|
||||||
|
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
|
||||||
|
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
|
||||||
|
|
||||||
|
# Histogram equalization
|
||||||
|
# if random.random() < 0.2:
|
||||||
|
# for i in range(3):
|
||||||
|
# img[:, :, i] = cv2.equalizeHist(img[:, :, i])
|
||||||
|
|
||||||
|
def replicate(img, labels):
|
||||||
|
# Replicate labels
|
||||||
|
h, w = img.shape[:2]
|
||||||
|
boxes = labels[:, 1:].astype(int)
|
||||||
|
x1, y1, x2, y2 = boxes.T
|
||||||
|
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
|
||||||
|
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
|
||||||
|
x1b, y1b, x2b, y2b = boxes[i]
|
||||||
|
bh, bw = y2b - y1b, x2b - x1b
|
||||||
|
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
|
||||||
|
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
||||||
|
img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
||||||
|
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
||||||
|
|
||||||
|
return img, labels
|
||||||
|
|
||||||
|
|
||||||
|
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
|
||||||
|
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
|
||||||
|
shape = img.shape[:2] # current shape [height, width]
|
||||||
|
if isinstance(new_shape, int):
|
||||||
|
new_shape = (new_shape, new_shape)
|
||||||
|
|
||||||
|
# Scale ratio (new / old)
|
||||||
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||||||
|
if not scaleup: # only scale down, do not scale up (for better test mAP)
|
||||||
|
r = min(r, 1.0)
|
||||||
|
|
||||||
|
# Compute padding
|
||||||
|
ratio = r, r # width, height ratios
|
||||||
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||||
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
||||||
|
if auto: # minimum rectangle
|
||||||
|
dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
|
||||||
|
elif scaleFill: # stretch
|
||||||
|
dw, dh = 0.0, 0.0
|
||||||
|
new_unpad = (new_shape[1], new_shape[0])
|
||||||
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
||||||
|
|
||||||
|
dw /= 2 # divide padding into 2 sides
|
||||||
|
dh /= 2
|
||||||
|
|
||||||
|
if shape[::-1] != new_unpad: # resize
|
||||||
|
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||||
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||||||
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||||||
|
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
||||||
|
return img, ratio, (dw, dh)
|
||||||
|
|
||||||
|
|
||||||
|
def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
|
||||||
|
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
|
||||||
|
# targets = [cls, xyxy]
|
||||||
|
|
||||||
|
height = img.shape[0] + border[0] * 2 # shape(h,w,c)
|
||||||
|
width = img.shape[1] + border[1] * 2
|
||||||
|
|
||||||
|
# Center
|
||||||
|
C = np.eye(3)
|
||||||
|
C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
|
||||||
|
C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
|
||||||
|
|
||||||
|
# Perspective
|
||||||
|
P = np.eye(3)
|
||||||
|
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
||||||
|
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
||||||
|
|
||||||
|
# Rotation and Scale
|
||||||
|
R = np.eye(3)
|
||||||
|
a = random.uniform(-degrees, degrees)
|
||||||
|
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
||||||
|
s = random.uniform(1 - scale, 1 + scale)
|
||||||
|
# s = 2 ** random.uniform(-scale, scale)
|
||||||
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
||||||
|
|
||||||
|
# Shear
|
||||||
|
S = np.eye(3)
|
||||||
|
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
||||||
|
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
||||||
|
|
||||||
|
# Translation
|
||||||
|
T = np.eye(3)
|
||||||
|
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
||||||
|
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
||||||
|
|
||||||
|
# Combined rotation matrix
|
||||||
|
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
||||||
|
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
||||||
|
if perspective:
|
||||||
|
img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
|
||||||
|
else: # affine
|
||||||
|
img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
||||||
|
|
||||||
|
# Visualize
|
||||||
|
# import matplotlib.pyplot as plt
|
||||||
|
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
||||||
|
# ax[0].imshow(img[:, :, ::-1]) # base
|
||||||
|
# ax[1].imshow(img2[:, :, ::-1]) # warped
|
||||||
|
|
||||||
|
# Transform label coordinates
|
||||||
|
n = len(targets)
|
||||||
|
if n:
|
||||||
|
# warp points
|
||||||
|
#xy = np.ones((n * 4, 3))
|
||||||
|
xy = np.ones((n * 9, 3))
|
||||||
|
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]].reshape(n * 9, 2) # x1y1, x2y2, x1y2, x2y1
|
||||||
|
xy = xy @ M.T # transform
|
||||||
|
if perspective:
|
||||||
|
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 18) # rescale
|
||||||
|
else: # affine
|
||||||
|
xy = xy[:, :2].reshape(n, 18)
|
||||||
|
|
||||||
|
# create new boxes
|
||||||
|
x = xy[:, [0, 2, 4, 6]]
|
||||||
|
y = xy[:, [1, 3, 5, 7]]
|
||||||
|
|
||||||
|
landmarks = xy[:, [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]]
|
||||||
|
mask = np.array(targets[:, 5:] > 0, dtype=np.int32)
|
||||||
|
landmarks = landmarks * mask
|
||||||
|
landmarks = landmarks + mask - 1
|
||||||
|
|
||||||
|
landmarks = np.where(landmarks < 0, -1, landmarks)
|
||||||
|
landmarks[:, [0, 2, 4, 6, 8]] = np.where(landmarks[:, [0, 2, 4, 6, 8]] > width, -1, landmarks[:, [0, 2, 4, 6, 8]])
|
||||||
|
landmarks[:, [1, 3, 5, 7, 9]] = np.where(landmarks[:, [1, 3, 5, 7, 9]] > height, -1,landmarks[:, [1, 3, 5, 7, 9]])
|
||||||
|
|
||||||
|
landmarks[:, 0] = np.where(landmarks[:, 1] == -1, -1, landmarks[:, 0])
|
||||||
|
landmarks[:, 1] = np.where(landmarks[:, 0] == -1, -1, landmarks[:, 1])
|
||||||
|
|
||||||
|
landmarks[:, 2] = np.where(landmarks[:, 3] == -1, -1, landmarks[:, 2])
|
||||||
|
landmarks[:, 3] = np.where(landmarks[:, 2] == -1, -1, landmarks[:, 3])
|
||||||
|
|
||||||
|
landmarks[:, 4] = np.where(landmarks[:, 5] == -1, -1, landmarks[:, 4])
|
||||||
|
landmarks[:, 5] = np.where(landmarks[:, 4] == -1, -1, landmarks[:, 5])
|
||||||
|
|
||||||
|
landmarks[:, 6] = np.where(landmarks[:, 7] == -1, -1, landmarks[:, 6])
|
||||||
|
landmarks[:, 7] = np.where(landmarks[:, 6] == -1, -1, landmarks[:, 7])
|
||||||
|
|
||||||
|
landmarks[:, 8] = np.where(landmarks[:, 9] == -1, -1, landmarks[:, 8])
|
||||||
|
landmarks[:, 9] = np.where(landmarks[:, 8] == -1, -1, landmarks[:, 9])
|
||||||
|
|
||||||
|
targets[:,5:] = landmarks
|
||||||
|
|
||||||
|
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
||||||
|
|
||||||
|
# # apply angle-based reduction of bounding boxes
|
||||||
|
# radians = a * math.pi / 180
|
||||||
|
# reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
|
||||||
|
# x = (xy[:, 2] + xy[:, 0]) / 2
|
||||||
|
# y = (xy[:, 3] + xy[:, 1]) / 2
|
||||||
|
# w = (xy[:, 2] - xy[:, 0]) * reduction
|
||||||
|
# h = (xy[:, 3] - xy[:, 1]) * reduction
|
||||||
|
# xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
|
||||||
|
|
||||||
|
# clip boxes
|
||||||
|
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
|
||||||
|
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
|
||||||
|
|
||||||
|
# filter candidates
|
||||||
|
i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
|
||||||
|
targets = targets[i]
|
||||||
|
targets[:, 1:5] = xy[i]
|
||||||
|
|
||||||
|
return img, targets
|
||||||
|
|
||||||
|
|
||||||
|
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1): # box1(4,n), box2(4,n)
|
||||||
|
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
||||||
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
||||||
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
||||||
|
ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
|
||||||
|
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates
|
||||||
|
|
||||||
|
|
||||||
|
def cutout(image, labels):
|
||||||
|
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
|
||||||
|
h, w = image.shape[:2]
|
||||||
|
|
||||||
|
def bbox_ioa(box1, box2):
|
||||||
|
# Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
|
||||||
|
box2 = box2.transpose()
|
||||||
|
|
||||||
|
# Get the coordinates of bounding boxes
|
||||||
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
||||||
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
||||||
|
|
||||||
|
# Intersection area
|
||||||
|
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
||||||
|
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
|
||||||
|
|
||||||
|
# box2 area
|
||||||
|
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
|
||||||
|
|
||||||
|
# Intersection over box2 area
|
||||||
|
return inter_area / box2_area
|
||||||
|
|
||||||
|
# create random masks
|
||||||
|
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
||||||
|
for s in scales:
|
||||||
|
mask_h = random.randint(1, int(h * s))
|
||||||
|
mask_w = random.randint(1, int(w * s))
|
||||||
|
|
||||||
|
# box
|
||||||
|
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
||||||
|
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
||||||
|
xmax = min(w, xmin + mask_w)
|
||||||
|
ymax = min(h, ymin + mask_h)
|
||||||
|
|
||||||
|
# apply random color mask
|
||||||
|
image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
||||||
|
|
||||||
|
# return unobscured labels
|
||||||
|
if len(labels) and s > 0.03:
|
||||||
|
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
||||||
|
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
||||||
|
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
||||||
|
|
||||||
|
return labels
|
||||||
|
|
||||||
|
|
||||||
|
def create_folder(path='./new'):
|
||||||
|
# Create folder
|
||||||
|
if os.path.exists(path):
|
||||||
|
shutil.rmtree(path) # delete output folder
|
||||||
|
os.makedirs(path) # make new output folder
|
||||||
|
|
||||||
|
|
||||||
|
def flatten_recursive(path='../coco128'):
|
||||||
|
# Flatten a recursive directory by bringing all files to top level
|
||||||
|
new_path = Path(path + '_flat')
|
||||||
|
create_folder(new_path)
|
||||||
|
for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
|
||||||
|
shutil.copyfile(file, new_path / Path(file).name)
|
||||||
|
|
||||||
|
|
||||||
|
def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128')
|
||||||
|
# Convert detection dataset into classification dataset, with one directory per class
|
||||||
|
|
||||||
|
path = Path(path) # images dir
|
||||||
|
shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
|
||||||
|
files = list(path.rglob('*.*'))
|
||||||
|
n = len(files) # number of files
|
||||||
|
for im_file in tqdm(files, total=n):
|
||||||
|
if im_file.suffix[1:] in img_formats:
|
||||||
|
# image
|
||||||
|
im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
|
||||||
|
h, w = im.shape[:2]
|
||||||
|
|
||||||
|
# labels
|
||||||
|
lb_file = Path(img2label_paths([str(im_file)])[0])
|
||||||
|
if Path(lb_file).exists():
|
||||||
|
with open(lb_file, 'r') as f:
|
||||||
|
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
|
||||||
|
|
||||||
|
for j, x in enumerate(lb):
|
||||||
|
c = int(x[0]) # class
|
||||||
|
f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
|
||||||
|
if not f.parent.is_dir():
|
||||||
|
f.parent.mkdir(parents=True)
|
||||||
|
|
||||||
|
b = x[1:] * [w, h, w, h] # box
|
||||||
|
# b[2:] = b[2:].max() # rectangle to square
|
||||||
|
b[2:] = b[2:] * 1.2 + 3 # pad
|
||||||
|
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
|
||||||
|
|
||||||
|
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
|
||||||
|
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
|
||||||
|
assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
|
||||||
|
|
||||||
|
|
||||||
|
def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128')
|
||||||
|
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
|
||||||
|
# Arguments
|
||||||
|
path: Path to images directory
|
||||||
|
weights: Train, val, test weights (list)
|
||||||
|
"""
|
||||||
|
path = Path(path) # images dir
|
||||||
|
files = list(path.rglob('*.*'))
|
||||||
|
n = len(files) # number of files
|
||||||
|
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
|
||||||
|
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
|
||||||
|
[(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
|
||||||
|
for i, img in tqdm(zip(indices, files), total=n):
|
||||||
|
if img.suffix[1:] in img_formats:
|
||||||
|
with open(path / txt[i], 'a') as f:
|
||||||
|
f.write(str(img) + '\n') # add image to txt file
|
||||||
646
yolov5-face_Jan1/utils/general.py
Executable file
646
yolov5-face_Jan1/utils/general.py
Executable file
@ -0,0 +1,646 @@
|
|||||||
|
# General utils
|
||||||
|
|
||||||
|
import glob
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
import re
|
||||||
|
import subprocess
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torchvision
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
from utils.google_utils import gsutil_getsize
|
||||||
|
from utils.metrics import fitness
|
||||||
|
from utils.torch_utils import init_torch_seeds
|
||||||
|
|
||||||
|
# Settings
|
||||||
|
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
||||||
|
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
|
||||||
|
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
|
||||||
|
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
|
||||||
|
|
||||||
|
|
||||||
|
def set_logging(rank=-1):
|
||||||
|
logging.basicConfig(
|
||||||
|
format="%(message)s",
|
||||||
|
level=logging.INFO if rank in [-1, 0] else logging.WARN)
|
||||||
|
|
||||||
|
|
||||||
|
def init_seeds(seed=0):
|
||||||
|
# Initialize random number generator (RNG) seeds
|
||||||
|
random.seed(seed)
|
||||||
|
np.random.seed(seed)
|
||||||
|
init_torch_seeds(seed)
|
||||||
|
|
||||||
|
|
||||||
|
def get_latest_run(search_dir='.'):
|
||||||
|
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
|
||||||
|
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
|
||||||
|
return max(last_list, key=os.path.getctime) if last_list else ''
|
||||||
|
|
||||||
|
|
||||||
|
def check_online():
|
||||||
|
# Check internet connectivity
|
||||||
|
import socket
|
||||||
|
try:
|
||||||
|
socket.create_connection(("1.1.1.1", 53)) # check host accesability
|
||||||
|
return True
|
||||||
|
except OSError:
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def check_git_status():
|
||||||
|
# Recommend 'git pull' if code is out of date
|
||||||
|
print(colorstr('github: '), end='')
|
||||||
|
try:
|
||||||
|
assert Path('.git').exists(), 'skipping check (not a git repository)'
|
||||||
|
assert not Path('/workspace').exists(), 'skipping check (Docker image)' # not Path('/.dockerenv').exists()
|
||||||
|
assert check_online(), 'skipping check (offline)'
|
||||||
|
|
||||||
|
cmd = 'git fetch && git config --get remote.origin.url' # github repo url
|
||||||
|
url = subprocess.check_output(cmd, shell=True).decode()[:-1]
|
||||||
|
cmd = 'git rev-list $(git rev-parse --abbrev-ref HEAD)..origin/master --count' # commits behind
|
||||||
|
n = int(subprocess.check_output(cmd, shell=True))
|
||||||
|
if n > 0:
|
||||||
|
print(f"⚠️ WARNING: code is out of date by {n} {'commits' if n > 1 else 'commmit'}. "
|
||||||
|
f"Use 'git pull' to update or 'git clone {url}' to download latest.")
|
||||||
|
else:
|
||||||
|
print(f'up to date with {url} ✅')
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
|
||||||
|
|
||||||
|
def check_requirements(file='requirements.txt'):
|
||||||
|
# Check installed dependencies meet requirements
|
||||||
|
import pkg_resources
|
||||||
|
requirements = pkg_resources.parse_requirements(Path(file).open())
|
||||||
|
requirements = [x.name + ''.join(*x.specs) if len(x.specs) else x.name for x in requirements]
|
||||||
|
pkg_resources.require(requirements) # DistributionNotFound or VersionConflict exception if requirements not met
|
||||||
|
|
||||||
|
|
||||||
|
def check_img_size(img_size, s=32):
|
||||||
|
# Verify img_size is a multiple of stride s
|
||||||
|
new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
|
||||||
|
if new_size != img_size:
|
||||||
|
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
|
||||||
|
return new_size
|
||||||
|
|
||||||
|
|
||||||
|
def check_file(file):
|
||||||
|
# Search for file if not found
|
||||||
|
if os.path.isfile(file) or file == '':
|
||||||
|
return file
|
||||||
|
else:
|
||||||
|
files = glob.glob('./**/' + file, recursive=True) # find file
|
||||||
|
assert len(files), 'File Not Found: %s' % file # assert file was found
|
||||||
|
assert len(files) == 1, "Multiple files match '%s', specify exact path: %s" % (file, files) # assert unique
|
||||||
|
return files[0] # return file
|
||||||
|
|
||||||
|
|
||||||
|
def check_dataset(dict):
|
||||||
|
# Download dataset if not found locally
|
||||||
|
val, s = dict.get('val'), dict.get('download')
|
||||||
|
if val and len(val):
|
||||||
|
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
|
||||||
|
if not all(x.exists() for x in val):
|
||||||
|
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
|
||||||
|
if s and len(s): # download script
|
||||||
|
print('Downloading %s ...' % s)
|
||||||
|
if s.startswith('http') and s.endswith('.zip'): # URL
|
||||||
|
f = Path(s).name # filename
|
||||||
|
torch.hub.download_url_to_file(s, f)
|
||||||
|
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
|
||||||
|
else: # bash script
|
||||||
|
r = os.system(s)
|
||||||
|
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
|
||||||
|
else:
|
||||||
|
raise Exception('Dataset not found.')
|
||||||
|
|
||||||
|
|
||||||
|
def make_divisible(x, divisor):
|
||||||
|
# Returns x evenly divisible by divisor
|
||||||
|
return math.ceil(x / divisor) * divisor
|
||||||
|
|
||||||
|
|
||||||
|
def clean_str(s):
|
||||||
|
# Cleans a string by replacing special characters with underscore _
|
||||||
|
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
|
||||||
|
|
||||||
|
|
||||||
|
def one_cycle(y1=0.0, y2=1.0, steps=100):
|
||||||
|
# lambda function for sinusoidal ramp from y1 to y2
|
||||||
|
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
|
||||||
|
|
||||||
|
|
||||||
|
def colorstr(*input):
|
||||||
|
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
|
||||||
|
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
|
||||||
|
colors = {'black': '\033[30m', # basic colors
|
||||||
|
'red': '\033[31m',
|
||||||
|
'green': '\033[32m',
|
||||||
|
'yellow': '\033[33m',
|
||||||
|
'blue': '\033[34m',
|
||||||
|
'magenta': '\033[35m',
|
||||||
|
'cyan': '\033[36m',
|
||||||
|
'white': '\033[37m',
|
||||||
|
'bright_black': '\033[90m', # bright colors
|
||||||
|
'bright_red': '\033[91m',
|
||||||
|
'bright_green': '\033[92m',
|
||||||
|
'bright_yellow': '\033[93m',
|
||||||
|
'bright_blue': '\033[94m',
|
||||||
|
'bright_magenta': '\033[95m',
|
||||||
|
'bright_cyan': '\033[96m',
|
||||||
|
'bright_white': '\033[97m',
|
||||||
|
'end': '\033[0m', # misc
|
||||||
|
'bold': '\033[1m',
|
||||||
|
'underline': '\033[4m'}
|
||||||
|
return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
|
||||||
|
|
||||||
|
|
||||||
|
def labels_to_class_weights(labels, nc=80):
|
||||||
|
# Get class weights (inverse frequency) from training labels
|
||||||
|
if labels[0] is None: # no labels loaded
|
||||||
|
return torch.Tensor()
|
||||||
|
|
||||||
|
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
|
||||||
|
classes = labels[:, 0].astype(np.int) # labels = [class xywh]
|
||||||
|
weights = np.bincount(classes, minlength=nc) # occurrences per class
|
||||||
|
|
||||||
|
# Prepend gridpoint count (for uCE training)
|
||||||
|
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
|
||||||
|
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
|
||||||
|
|
||||||
|
weights[weights == 0] = 1 # replace empty bins with 1
|
||||||
|
weights = 1 / weights # number of targets per class
|
||||||
|
weights /= weights.sum() # normalize
|
||||||
|
return torch.from_numpy(weights)
|
||||||
|
|
||||||
|
|
||||||
|
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
|
||||||
|
# Produces image weights based on class_weights and image contents
|
||||||
|
class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
|
||||||
|
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
|
||||||
|
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
|
||||||
|
return image_weights
|
||||||
|
|
||||||
|
|
||||||
|
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
|
||||||
|
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
||||||
|
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
|
||||||
|
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
|
||||||
|
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
|
||||||
|
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
|
||||||
|
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
|
||||||
|
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
||||||
|
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def xyxy2xywh(x):
|
||||||
|
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
||||||
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||||
|
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
||||||
|
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
||||||
|
y[:, 2] = x[:, 2] - x[:, 0] # width
|
||||||
|
y[:, 3] = x[:, 3] - x[:, 1] # height
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def xywh2xyxy(x):
|
||||||
|
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
||||||
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||||
|
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
||||||
|
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
||||||
|
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
||||||
|
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def xywhn2xyxy(x, w=640, h=640, padw=32, padh=32):
|
||||||
|
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
||||||
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||||
|
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
|
||||||
|
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
|
||||||
|
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
|
||||||
|
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
||||||
|
# Rescale coords (xyxy) from img1_shape to img0_shape
|
||||||
|
if ratio_pad is None: # calculate from img0_shape
|
||||||
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
||||||
|
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
||||||
|
else:
|
||||||
|
gain = ratio_pad[0][0]
|
||||||
|
pad = ratio_pad[1]
|
||||||
|
|
||||||
|
coords[:, [0, 2]] -= pad[0] # x padding
|
||||||
|
coords[:, [1, 3]] -= pad[1] # y padding
|
||||||
|
coords[:, :4] /= gain
|
||||||
|
clip_coords(coords, img0_shape)
|
||||||
|
return coords
|
||||||
|
|
||||||
|
|
||||||
|
def clip_coords(boxes, img_shape):
|
||||||
|
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
||||||
|
boxes[:, 0].clamp_(0, img_shape[1]) # x1
|
||||||
|
boxes[:, 1].clamp_(0, img_shape[0]) # y1
|
||||||
|
boxes[:, 2].clamp_(0, img_shape[1]) # x2
|
||||||
|
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
||||||
|
|
||||||
|
|
||||||
|
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-9):
|
||||||
|
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
|
||||||
|
box2 = box2.T
|
||||||
|
|
||||||
|
# Get the coordinates of bounding boxes
|
||||||
|
if x1y1x2y2: # x1, y1, x2, y2 = box1
|
||||||
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
||||||
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
||||||
|
else: # transform from xywh to xyxy
|
||||||
|
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
|
||||||
|
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
|
||||||
|
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
|
||||||
|
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
|
||||||
|
|
||||||
|
# Intersection area
|
||||||
|
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
||||||
|
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
||||||
|
|
||||||
|
# Union Area
|
||||||
|
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
||||||
|
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
||||||
|
union = w1 * h1 + w2 * h2 - inter + eps
|
||||||
|
|
||||||
|
iou = inter / union
|
||||||
|
if GIoU or DIoU or CIoU:
|
||||||
|
# convex (smallest enclosing box) width
|
||||||
|
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)
|
||||||
|
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
||||||
|
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
||||||
|
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
||||||
|
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
|
||||||
|
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
|
||||||
|
if DIoU:
|
||||||
|
return iou - rho2 / c2 # DIoU
|
||||||
|
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
||||||
|
v = (4 / math.pi ** 2) * \
|
||||||
|
torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
|
||||||
|
with torch.no_grad():
|
||||||
|
alpha = v / ((1 + eps) - iou + v)
|
||||||
|
return iou - (rho2 / c2 + v * alpha) # CIoU
|
||||||
|
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
||||||
|
c_area = cw * ch + eps # convex area
|
||||||
|
return iou - (c_area - union) / c_area # GIoU
|
||||||
|
else:
|
||||||
|
return iou # IoU
|
||||||
|
|
||||||
|
|
||||||
|
def box_iou(box1, box2):
|
||||||
|
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
||||||
|
"""
|
||||||
|
Return intersection-over-union (Jaccard index) of boxes.
|
||||||
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||||
|
Arguments:
|
||||||
|
box1 (Tensor[N, 4])
|
||||||
|
box2 (Tensor[M, 4])
|
||||||
|
Returns:
|
||||||
|
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
||||||
|
IoU values for every element in boxes1 and boxes2
|
||||||
|
"""
|
||||||
|
|
||||||
|
def box_area(box):
|
||||||
|
# box = 4xn
|
||||||
|
return (box[2] - box[0]) * (box[3] - box[1])
|
||||||
|
|
||||||
|
area1 = box_area(box1.T)
|
||||||
|
area2 = box_area(box2.T)
|
||||||
|
|
||||||
|
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
||||||
|
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) -
|
||||||
|
torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
||||||
|
# iou = inter / (area1 + area2 - inter)
|
||||||
|
return inter / (area1[:, None] + area2 - inter)
|
||||||
|
|
||||||
|
|
||||||
|
def wh_iou(wh1, wh2):
|
||||||
|
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
|
||||||
|
wh1 = wh1[:, None] # [N,1,2]
|
||||||
|
wh2 = wh2[None] # [1,M,2]
|
||||||
|
inter = torch.min(wh1, wh2).prod(2) # [N,M]
|
||||||
|
# iou = inter / (area1 + area2 - inter)
|
||||||
|
return inter / (wh1.prod(2) + wh2.prod(2) - inter)
|
||||||
|
|
||||||
|
def jaccard_diou(box_a, box_b, iscrowd:bool=False):
|
||||||
|
use_batch = True
|
||||||
|
if box_a.dim() == 2:
|
||||||
|
use_batch = False
|
||||||
|
box_a = box_a[None, ...]
|
||||||
|
box_b = box_b[None, ...]
|
||||||
|
|
||||||
|
inter = intersect(box_a, box_b)
|
||||||
|
area_a = ((box_a[:, :, 2]-box_a[:, :, 0]) *
|
||||||
|
(box_a[:, :, 3]-box_a[:, :, 1])).unsqueeze(2).expand_as(inter) # [A,B]
|
||||||
|
area_b = ((box_b[:, :, 2]-box_b[:, :, 0]) *
|
||||||
|
(box_b[:, :, 3]-box_b[:, :, 1])).unsqueeze(1).expand_as(inter) # [A,B]
|
||||||
|
union = area_a + area_b - inter
|
||||||
|
x1 = ((box_a[:, :, 2]+box_a[:, :, 0]) / 2).unsqueeze(2).expand_as(inter)
|
||||||
|
y1 = ((box_a[:, :, 3]+box_a[:, :, 1]) / 2).unsqueeze(2).expand_as(inter)
|
||||||
|
x2 = ((box_b[:, :, 2]+box_b[:, :, 0]) / 2).unsqueeze(1).expand_as(inter)
|
||||||
|
y2 = ((box_b[:, :, 3]+box_b[:, :, 1]) / 2).unsqueeze(1).expand_as(inter)
|
||||||
|
|
||||||
|
t1 = box_a[:, :, 1].unsqueeze(2).expand_as(inter)
|
||||||
|
b1 = box_a[:, :, 3].unsqueeze(2).expand_as(inter)
|
||||||
|
l1 = box_a[:, :, 0].unsqueeze(2).expand_as(inter)
|
||||||
|
r1 = box_a[:, :, 2].unsqueeze(2).expand_as(inter)
|
||||||
|
|
||||||
|
t2 = box_b[:, :, 1].unsqueeze(1).expand_as(inter)
|
||||||
|
b2 = box_b[:, :, 3].unsqueeze(1).expand_as(inter)
|
||||||
|
l2 = box_b[:, :, 0].unsqueeze(1).expand_as(inter)
|
||||||
|
r2 = box_b[:, :, 2].unsqueeze(1).expand_as(inter)
|
||||||
|
|
||||||
|
cr = torch.max(r1, r2)
|
||||||
|
cl = torch.min(l1, l2)
|
||||||
|
ct = torch.min(t1, t2)
|
||||||
|
cb = torch.max(b1, b2)
|
||||||
|
D = (((x2 - x1)**2 + (y2 - y1)**2) / ((cr-cl)**2 + (cb-ct)**2 + 1e-7))
|
||||||
|
out = inter / area_a if iscrowd else inter / (union + 1e-7) - D ** 0.7
|
||||||
|
return out if use_batch else out.squeeze(0)
|
||||||
|
|
||||||
|
|
||||||
|
def non_max_suppression_face(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
|
||||||
|
"""Performs Non-Maximum Suppression (NMS) on inference results
|
||||||
|
Returns:
|
||||||
|
detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
|
||||||
|
"""
|
||||||
|
|
||||||
|
nc = prediction.shape[2] - 15 # number of classes
|
||||||
|
xc = prediction[..., 4] > conf_thres # candidates
|
||||||
|
|
||||||
|
# Settings
|
||||||
|
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
||||||
|
time_limit = 10.0 # seconds to quit after
|
||||||
|
redundant = True # require redundant detections
|
||||||
|
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
|
||||||
|
merge = False # use merge-NMS
|
||||||
|
|
||||||
|
t = time.time()
|
||||||
|
output = [torch.zeros((0, 16), device=prediction.device)] * prediction.shape[0]
|
||||||
|
for xi, x in enumerate(prediction): # image index, image inference
|
||||||
|
# Apply constraints
|
||||||
|
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
||||||
|
x = x[xc[xi]] # confidence
|
||||||
|
|
||||||
|
# Cat apriori labels if autolabelling
|
||||||
|
if labels and len(labels[xi]):
|
||||||
|
l = labels[xi]
|
||||||
|
v = torch.zeros((len(l), nc + 15), device=x.device)
|
||||||
|
v[:, :4] = l[:, 1:5] # box
|
||||||
|
v[:, 4] = 1.0 # conf
|
||||||
|
v[range(len(l)), l[:, 0].long() + 15] = 1.0 # cls
|
||||||
|
x = torch.cat((x, v), 0)
|
||||||
|
|
||||||
|
# If none remain process next image
|
||||||
|
if not x.shape[0]:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Compute conf
|
||||||
|
x[:, 15:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
||||||
|
|
||||||
|
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
||||||
|
box = xywh2xyxy(x[:, :4])
|
||||||
|
|
||||||
|
# Detections matrix nx6 (xyxy, conf, landmarks, cls)
|
||||||
|
if multi_label:
|
||||||
|
i, j = (x[:, 15:] > conf_thres).nonzero(as_tuple=False).T
|
||||||
|
x = torch.cat((box[i], x[i, j + 15, None], x[:, 5:15] ,j[:, None].float()), 1)
|
||||||
|
else: # best class only
|
||||||
|
conf, j = x[:, 15:].max(1, keepdim=True)
|
||||||
|
x = torch.cat((box, conf, x[:, 5:15], j.float()), 1)[conf.view(-1) > conf_thres]
|
||||||
|
|
||||||
|
# Filter by class
|
||||||
|
if classes is not None:
|
||||||
|
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
||||||
|
|
||||||
|
# If none remain process next image
|
||||||
|
n = x.shape[0] # number of boxes
|
||||||
|
if not n:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Batched NMS
|
||||||
|
c = x[:, 15:16] * (0 if agnostic else max_wh) # classes
|
||||||
|
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
||||||
|
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
||||||
|
#if i.shape[0] > max_det: # limit detections
|
||||||
|
# i = i[:max_det]
|
||||||
|
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
||||||
|
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
||||||
|
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
||||||
|
weights = iou * scores[None] # box weights
|
||||||
|
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
||||||
|
if redundant:
|
||||||
|
i = i[iou.sum(1) > 1] # require redundancy
|
||||||
|
|
||||||
|
output[xi] = x[i]
|
||||||
|
if (time.time() - t) > time_limit:
|
||||||
|
break # time limit exceeded
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
|
||||||
|
"""Performs Non-Maximum Suppression (NMS) on inference results
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
|
||||||
|
"""
|
||||||
|
|
||||||
|
nc = prediction.shape[2] - 5 # number of classes
|
||||||
|
xc = prediction[..., 4] > conf_thres # candidates
|
||||||
|
|
||||||
|
# Settings
|
||||||
|
# (pixels) minimum and maximum box width and height
|
||||||
|
min_wh, max_wh = 2, 4096
|
||||||
|
#max_det = 300 # maximum number of detections per image
|
||||||
|
#max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
||||||
|
time_limit = 10.0 # seconds to quit after
|
||||||
|
redundant = True # require redundant detections
|
||||||
|
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
|
||||||
|
merge = False # use merge-NMS
|
||||||
|
|
||||||
|
t = time.time()
|
||||||
|
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
|
||||||
|
for xi, x in enumerate(prediction): # image index, image inference
|
||||||
|
# Apply constraints
|
||||||
|
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
||||||
|
x = x[xc[xi]] # confidence
|
||||||
|
|
||||||
|
# Cat apriori labels if autolabelling
|
||||||
|
if labels and len(labels[xi]):
|
||||||
|
l = labels[xi]
|
||||||
|
v = torch.zeros((len(l), nc + 5), device=x.device)
|
||||||
|
v[:, :4] = l[:, 1:5] # box
|
||||||
|
v[:, 4] = 1.0 # conf
|
||||||
|
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
|
||||||
|
x = torch.cat((x, v), 0)
|
||||||
|
|
||||||
|
# If none remain process next image
|
||||||
|
if not x.shape[0]:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Compute conf
|
||||||
|
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
||||||
|
|
||||||
|
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
||||||
|
box = xywh2xyxy(x[:, :4])
|
||||||
|
|
||||||
|
# Detections matrix nx6 (xyxy, conf, cls)
|
||||||
|
if multi_label:
|
||||||
|
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
|
||||||
|
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
|
||||||
|
else: # best class only
|
||||||
|
conf, j = x[:, 5:].max(1, keepdim=True)
|
||||||
|
x = torch.cat((box, conf, j.float()), 1)[
|
||||||
|
conf.view(-1) > conf_thres]
|
||||||
|
|
||||||
|
# Filter by class
|
||||||
|
if classes is not None:
|
||||||
|
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
||||||
|
|
||||||
|
# Apply finite constraint
|
||||||
|
# if not torch.isfinite(x).all():
|
||||||
|
# x = x[torch.isfinite(x).all(1)]
|
||||||
|
|
||||||
|
# Check shape
|
||||||
|
n = x.shape[0] # number of boxes
|
||||||
|
if not n: # no boxes
|
||||||
|
continue
|
||||||
|
#elif n > max_nms: # excess boxes
|
||||||
|
# x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
|
||||||
|
x = x[x[:, 4].argsort(descending=True)] # sort by confidence
|
||||||
|
|
||||||
|
# Batched NMS
|
||||||
|
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
||||||
|
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
||||||
|
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
||||||
|
#if i.shape[0] > max_det: # limit detections
|
||||||
|
# i = i[:max_det]
|
||||||
|
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
||||||
|
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
||||||
|
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
||||||
|
weights = iou * scores[None] # box weights
|
||||||
|
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
||||||
|
if redundant:
|
||||||
|
i = i[iou.sum(1) > 1] # require redundancy
|
||||||
|
|
||||||
|
output[xi] = x[i]
|
||||||
|
if (time.time() - t) > time_limit:
|
||||||
|
print(f'WARNING: NMS time limit {time_limit}s exceeded')
|
||||||
|
break # time limit exceeded
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def strip_optimizer(f='weights/best.pt', s=''): # from utils.general import *; strip_optimizer()
|
||||||
|
# Strip optimizer from 'f' to finalize training, optionally save as 's'
|
||||||
|
x = torch.load(f, map_location=torch.device('cpu'))
|
||||||
|
for key in 'optimizer', 'training_results', 'wandb_id':
|
||||||
|
x[key] = None
|
||||||
|
x['epoch'] = -1
|
||||||
|
x['model'].half() # to FP16
|
||||||
|
for p in x['model'].parameters():
|
||||||
|
p.requires_grad = False
|
||||||
|
torch.save(x, s or f)
|
||||||
|
mb = os.path.getsize(s or f) / 1E6 # filesize
|
||||||
|
print('Optimizer stripped from %s,%s %.1fMB' % (f, (' saved as %s,' % s) if s else '', mb))
|
||||||
|
|
||||||
|
|
||||||
|
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
|
||||||
|
# Print mutation results to evolve.txt (for use with train.py --evolve)
|
||||||
|
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
|
||||||
|
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
|
||||||
|
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
|
||||||
|
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
|
||||||
|
|
||||||
|
if bucket:
|
||||||
|
url = 'gs://%s/evolve.txt' % bucket
|
||||||
|
if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
|
||||||
|
os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
|
||||||
|
|
||||||
|
with open('evolve.txt', 'a') as f: # append result
|
||||||
|
f.write(c + b + '\n')
|
||||||
|
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
|
||||||
|
x = x[np.argsort(-fitness(x))] # sort
|
||||||
|
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
|
||||||
|
|
||||||
|
# Save yaml
|
||||||
|
for i, k in enumerate(hyp.keys()):
|
||||||
|
hyp[k] = float(x[0, i + 7])
|
||||||
|
with open(yaml_file, 'w') as f:
|
||||||
|
results = tuple(x[0, :7])
|
||||||
|
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
|
||||||
|
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
|
||||||
|
yaml.dump(hyp, f, sort_keys=False)
|
||||||
|
|
||||||
|
if bucket:
|
||||||
|
os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
|
||||||
|
|
||||||
|
|
||||||
|
def apply_classifier(x, model, img, im0):
|
||||||
|
# applies a second stage classifier to yolo outputs
|
||||||
|
im0 = [im0] if isinstance(im0, np.ndarray) else im0
|
||||||
|
for i, d in enumerate(x): # per image
|
||||||
|
if d is not None and len(d):
|
||||||
|
d = d.clone()
|
||||||
|
|
||||||
|
# Reshape and pad cutouts
|
||||||
|
b = xyxy2xywh(d[:, :4]) # boxes
|
||||||
|
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
|
||||||
|
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
|
||||||
|
d[:, :4] = xywh2xyxy(b).long()
|
||||||
|
|
||||||
|
# Rescale boxes from img_size to im0 size
|
||||||
|
scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
|
||||||
|
|
||||||
|
# Classes
|
||||||
|
pred_cls1 = d[:, 5].long()
|
||||||
|
ims = []
|
||||||
|
for j, a in enumerate(d): # per item
|
||||||
|
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
|
||||||
|
im = cv2.resize(cutout, (224, 224)) # BGR
|
||||||
|
# cv2.imwrite('test%i.jpg' % j, cutout)
|
||||||
|
|
||||||
|
# BGR to RGB, to 3x416x416
|
||||||
|
im = im[:, :, ::-1].transpose(2, 0, 1)
|
||||||
|
im = np.ascontiguousarray(
|
||||||
|
im, dtype=np.float32) # uint8 to float32
|
||||||
|
im /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||||||
|
ims.append(im)
|
||||||
|
|
||||||
|
pred_cls2 = model(torch.Tensor(ims).to(d.device)
|
||||||
|
).argmax(1) # classifier prediction
|
||||||
|
# retain matching class detections
|
||||||
|
x[i] = x[i][pred_cls1 == pred_cls2]
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def increment_path(path, exist_ok=True, sep=''):
|
||||||
|
# Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
|
||||||
|
path = Path(path) # os-agnostic
|
||||||
|
if (path.exists() and exist_ok) or (not path.exists()):
|
||||||
|
return str(path)
|
||||||
|
else:
|
||||||
|
dirs = glob.glob(f"{path}{sep}*") # similar paths
|
||||||
|
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
|
||||||
|
i = [int(m.groups()[0]) for m in matches if m] # indices
|
||||||
|
n = max(i) + 1 if i else 2 # increment number
|
||||||
|
return f"{path}{sep}{n}" # update path
|
||||||
122
yolov5-face_Jan1/utils/google_utils.py
Normal file
122
yolov5-face_Jan1/utils/google_utils.py
Normal file
@ -0,0 +1,122 @@
|
|||||||
|
# Google utils: https://cloud.google.com/storage/docs/reference/libraries
|
||||||
|
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
|
import subprocess
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import requests
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def gsutil_getsize(url=''):
|
||||||
|
# gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
|
||||||
|
s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
|
||||||
|
return eval(s.split(' ')[0]) if len(s) else 0 # bytes
|
||||||
|
|
||||||
|
|
||||||
|
def attempt_download(file, repo='ultralytics/yolov5'):
|
||||||
|
# Attempt file download if does not exist
|
||||||
|
file = Path(str(file).strip().replace("'", '').lower())
|
||||||
|
|
||||||
|
if not file.exists():
|
||||||
|
try:
|
||||||
|
response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
|
||||||
|
assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...]
|
||||||
|
tag = response['tag_name'] # i.e. 'v1.0'
|
||||||
|
except: # fallback plan
|
||||||
|
assets = ['yolov5.pt', 'yolov5.pt', 'yolov5l.pt', 'yolov5x.pt']
|
||||||
|
tag = subprocess.check_output('git tag', shell=True).decode('utf-8').split('\n')[-2]
|
||||||
|
|
||||||
|
name = file.name
|
||||||
|
if name in assets:
|
||||||
|
msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/'
|
||||||
|
redundant = False # second download option
|
||||||
|
try: # GitHub
|
||||||
|
url = f'https://github.com/{repo}/releases/download/{tag}/{name}'
|
||||||
|
print(f'Downloading {url} to {file}...')
|
||||||
|
torch.hub.download_url_to_file(url, file)
|
||||||
|
assert file.exists() and file.stat().st_size > 1E6 # check
|
||||||
|
except Exception as e: # GCP
|
||||||
|
print(f'Download error: {e}')
|
||||||
|
assert redundant, 'No secondary mirror'
|
||||||
|
url = f'https://storage.googleapis.com/{repo}/ckpt/{name}'
|
||||||
|
print(f'Downloading {url} to {file}...')
|
||||||
|
os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights)
|
||||||
|
finally:
|
||||||
|
if not file.exists() or file.stat().st_size < 1E6: # check
|
||||||
|
file.unlink(missing_ok=True) # remove partial downloads
|
||||||
|
print(f'ERROR: Download failure: {msg}')
|
||||||
|
print('')
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
|
def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
|
||||||
|
# Downloads a file from Google Drive. from yolov5.utils.google_utils import *; gdrive_download()
|
||||||
|
t = time.time()
|
||||||
|
file = Path(file)
|
||||||
|
cookie = Path('cookie') # gdrive cookie
|
||||||
|
print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
|
||||||
|
file.unlink(missing_ok=True) # remove existing file
|
||||||
|
cookie.unlink(missing_ok=True) # remove existing cookie
|
||||||
|
|
||||||
|
# Attempt file download
|
||||||
|
out = "NUL" if platform.system() == "Windows" else "/dev/null"
|
||||||
|
os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
|
||||||
|
if os.path.exists('cookie'): # large file
|
||||||
|
s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
|
||||||
|
else: # small file
|
||||||
|
s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
|
||||||
|
r = os.system(s) # execute, capture return
|
||||||
|
cookie.unlink(missing_ok=True) # remove existing cookie
|
||||||
|
|
||||||
|
# Error check
|
||||||
|
if r != 0:
|
||||||
|
file.unlink(missing_ok=True) # remove partial
|
||||||
|
print('Download error ') # raise Exception('Download error')
|
||||||
|
return r
|
||||||
|
|
||||||
|
# Unzip if archive
|
||||||
|
if file.suffix == '.zip':
|
||||||
|
print('unzipping... ', end='')
|
||||||
|
os.system(f'unzip -q {file}') # unzip
|
||||||
|
file.unlink() # remove zip to free space
|
||||||
|
|
||||||
|
print(f'Done ({time.time() - t:.1f}s)')
|
||||||
|
return r
|
||||||
|
|
||||||
|
|
||||||
|
def get_token(cookie="./cookie"):
|
||||||
|
with open(cookie) as f:
|
||||||
|
for line in f:
|
||||||
|
if "download" in line:
|
||||||
|
return line.split()[-1]
|
||||||
|
return ""
|
||||||
|
|
||||||
|
# def upload_blob(bucket_name, source_file_name, destination_blob_name):
|
||||||
|
# # Uploads a file to a bucket
|
||||||
|
# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
|
||||||
|
#
|
||||||
|
# storage_client = storage.Client()
|
||||||
|
# bucket = storage_client.get_bucket(bucket_name)
|
||||||
|
# blob = bucket.blob(destination_blob_name)
|
||||||
|
#
|
||||||
|
# blob.upload_from_filename(source_file_name)
|
||||||
|
#
|
||||||
|
# print('File {} uploaded to {}.'.format(
|
||||||
|
# source_file_name,
|
||||||
|
# destination_blob_name))
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# def download_blob(bucket_name, source_blob_name, destination_file_name):
|
||||||
|
# # Uploads a blob from a bucket
|
||||||
|
# storage_client = storage.Client()
|
||||||
|
# bucket = storage_client.get_bucket(bucket_name)
|
||||||
|
# blob = bucket.blob(source_blob_name)
|
||||||
|
#
|
||||||
|
# blob.download_to_filename(destination_file_name)
|
||||||
|
#
|
||||||
|
# print('Blob {} downloaded to {}.'.format(
|
||||||
|
# source_blob_name,
|
||||||
|
# destination_file_name))
|
||||||
36
yolov5-face_Jan1/utils/infer_utils.py
Executable file
36
yolov5-face_Jan1/utils/infer_utils.py
Executable file
@ -0,0 +1,36 @@
|
|||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def decode_infer(output, stride):
|
||||||
|
# logging.info(torch.tensor(output.shape[0]))
|
||||||
|
# logging.info(output.shape)
|
||||||
|
# # bz is batch-size
|
||||||
|
# bz = tuple(torch.tensor(output.shape[0]))
|
||||||
|
# gridsize = tuple(torch.tensor(output.shape[-1]))
|
||||||
|
# logging.info(gridsize)
|
||||||
|
sh = torch.tensor(output.shape)
|
||||||
|
bz = sh[0]
|
||||||
|
gridsize = sh[-1]
|
||||||
|
|
||||||
|
output = output.permute(0, 2, 3, 1)
|
||||||
|
output = output.view(bz, gridsize, gridsize, self.gt_per_grid, 5+self.numclass)
|
||||||
|
x1y1, x2y2, conf, prob = torch.split(
|
||||||
|
output, [2, 2, 1, self.numclass], dim=4)
|
||||||
|
|
||||||
|
shiftx = torch.arange(0, gridsize, dtype=torch.float32)
|
||||||
|
shifty = torch.arange(0, gridsize, dtype=torch.float32)
|
||||||
|
shifty, shiftx = torch.meshgrid([shiftx, shifty])
|
||||||
|
shiftx = shiftx.unsqueeze(-1).repeat(bz, 1, 1, self.gt_per_grid)
|
||||||
|
shifty = shifty.unsqueeze(-1).repeat(bz, 1, 1, self.gt_per_grid)
|
||||||
|
|
||||||
|
xy_grid = torch.stack([shiftx, shifty], dim=4).cuda()
|
||||||
|
x1y1 = (xy_grid+0.5-torch.exp(x1y1))*stride
|
||||||
|
x2y2 = (xy_grid+0.5+torch.exp(x2y2))*stride
|
||||||
|
|
||||||
|
xyxy = torch.cat((x1y1, x2y2), dim=4)
|
||||||
|
conf = torch.sigmoid(conf)
|
||||||
|
prob = torch.sigmoid(prob)
|
||||||
|
output = torch.cat((xyxy, conf, prob), 4)
|
||||||
|
output = output.view(bz, -1, 5+self.numclass)
|
||||||
|
return output
|
||||||
304
yolov5-face_Jan1/utils/loss.py
Normal file
304
yolov5-face_Jan1/utils/loss.py
Normal file
@ -0,0 +1,304 @@
|
|||||||
|
# Loss functions
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import numpy as np
|
||||||
|
from utils.general import bbox_iou
|
||||||
|
from utils.torch_utils import is_parallel
|
||||||
|
|
||||||
|
|
||||||
|
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
||||||
|
# return positive, negative label smoothing BCE targets
|
||||||
|
return 1.0 - 0.5 * eps, 0.5 * eps
|
||||||
|
|
||||||
|
|
||||||
|
class BCEBlurWithLogitsLoss(nn.Module):
|
||||||
|
# BCEwithLogitLoss() with reduced missing label effects.
|
||||||
|
def __init__(self, alpha=0.05):
|
||||||
|
super(BCEBlurWithLogitsLoss, self).__init__()
|
||||||
|
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
|
||||||
|
self.alpha = alpha
|
||||||
|
|
||||||
|
def forward(self, pred, true):
|
||||||
|
loss = self.loss_fcn(pred, true)
|
||||||
|
pred = torch.sigmoid(pred) # prob from logits
|
||||||
|
dx = pred - true # reduce only missing label effects
|
||||||
|
# dx = (pred - true).abs() # reduce missing label and false label effects
|
||||||
|
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
|
||||||
|
loss *= alpha_factor
|
||||||
|
return loss.mean()
|
||||||
|
|
||||||
|
|
||||||
|
class FocalLoss(nn.Module):
|
||||||
|
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
||||||
|
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||||||
|
super(FocalLoss, self).__init__()
|
||||||
|
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||||||
|
self.gamma = gamma
|
||||||
|
self.alpha = alpha
|
||||||
|
self.reduction = loss_fcn.reduction
|
||||||
|
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||||||
|
|
||||||
|
def forward(self, pred, true):
|
||||||
|
loss = self.loss_fcn(pred, true)
|
||||||
|
# p_t = torch.exp(-loss)
|
||||||
|
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
||||||
|
|
||||||
|
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
||||||
|
pred_prob = torch.sigmoid(pred) # prob from logits
|
||||||
|
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
||||||
|
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||||||
|
modulating_factor = (1.0 - p_t) ** self.gamma
|
||||||
|
loss *= alpha_factor * modulating_factor
|
||||||
|
|
||||||
|
if self.reduction == 'mean':
|
||||||
|
return loss.mean()
|
||||||
|
elif self.reduction == 'sum':
|
||||||
|
return loss.sum()
|
||||||
|
else: # 'none'
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
class QFocalLoss(nn.Module):
|
||||||
|
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
||||||
|
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||||||
|
super(QFocalLoss, self).__init__()
|
||||||
|
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||||||
|
self.gamma = gamma
|
||||||
|
self.alpha = alpha
|
||||||
|
self.reduction = loss_fcn.reduction
|
||||||
|
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||||||
|
|
||||||
|
def forward(self, pred, true):
|
||||||
|
loss = self.loss_fcn(pred, true)
|
||||||
|
|
||||||
|
pred_prob = torch.sigmoid(pred) # prob from logits
|
||||||
|
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||||||
|
modulating_factor = torch.abs(true - pred_prob) ** self.gamma
|
||||||
|
loss *= alpha_factor * modulating_factor
|
||||||
|
|
||||||
|
if self.reduction == 'mean':
|
||||||
|
return loss.mean()
|
||||||
|
elif self.reduction == 'sum':
|
||||||
|
return loss.sum()
|
||||||
|
else: # 'none'
|
||||||
|
return loss
|
||||||
|
|
||||||
|
class WingLoss(nn.Module):
|
||||||
|
def __init__(self, w=10, e=2):
|
||||||
|
super(WingLoss, self).__init__()
|
||||||
|
# https://arxiv.org/pdf/1711.06753v4.pdf Figure 5
|
||||||
|
self.w = w
|
||||||
|
self.e = e
|
||||||
|
self.C = self.w - self.w * np.log(1 + self.w / self.e)
|
||||||
|
|
||||||
|
def forward(self, x, t, sigma=1):
|
||||||
|
weight = torch.ones_like(t)
|
||||||
|
weight[torch.where(t==-1)] = 0
|
||||||
|
diff = weight * (x - t)
|
||||||
|
abs_diff = diff.abs()
|
||||||
|
flag = (abs_diff.data < self.w).float()
|
||||||
|
y = flag * self.w * torch.log(1 + abs_diff / self.e) + (1 - flag) * (abs_diff - self.C)
|
||||||
|
return y.sum()
|
||||||
|
|
||||||
|
class LandmarksLoss(nn.Module):
|
||||||
|
# BCEwithLogitLoss() with reduced missing label effects.
|
||||||
|
def __init__(self, alpha=1.0):
|
||||||
|
super(LandmarksLoss, self).__init__()
|
||||||
|
self.loss_fcn = WingLoss()#nn.SmoothL1Loss(reduction='sum')
|
||||||
|
self.alpha = alpha
|
||||||
|
|
||||||
|
def forward(self, pred, truel, mask):
|
||||||
|
loss = self.loss_fcn(pred*mask, truel*mask)
|
||||||
|
return loss / (torch.sum(mask) + 10e-14)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_loss(p, targets, model): # predictions, targets, model
|
||||||
|
device = targets.device
|
||||||
|
lcls, lbox, lobj, lmark = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
|
||||||
|
tcls, tbox, indices, anchors, tlandmarks, lmks_mask = build_targets(p, targets, model) # targets
|
||||||
|
h = model.hyp # hyperparameters
|
||||||
|
|
||||||
|
# Define criteria
|
||||||
|
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) # weight=model.class_weights)
|
||||||
|
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
||||||
|
|
||||||
|
landmarks_loss = LandmarksLoss(1.0)
|
||||||
|
|
||||||
|
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
||||||
|
cp, cn = smooth_BCE(eps=0.0)
|
||||||
|
|
||||||
|
# Focal loss
|
||||||
|
g = h['fl_gamma'] # focal loss gamma
|
||||||
|
if g > 0:
|
||||||
|
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
||||||
|
|
||||||
|
# Losses
|
||||||
|
nt = 0 # number of targets
|
||||||
|
no = len(p) # number of outputs
|
||||||
|
balance = [4.0, 1.0, 0.4] if no == 3 else [4.0, 1.0, 0.4, 0.1] # P3-5 or P3-6
|
||||||
|
for i, pi in enumerate(p): # layer index, layer predictions
|
||||||
|
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
||||||
|
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
|
||||||
|
|
||||||
|
n = b.shape[0] # number of targets
|
||||||
|
if n:
|
||||||
|
nt += n # cumulative targets
|
||||||
|
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
|
||||||
|
|
||||||
|
# Regression
|
||||||
|
pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
||||||
|
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
|
||||||
|
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
||||||
|
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
|
||||||
|
lbox += (1.0 - iou).mean() # iou loss
|
||||||
|
|
||||||
|
# Objectness
|
||||||
|
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
|
||||||
|
|
||||||
|
# Classification
|
||||||
|
if model.nc > 1: # cls loss (only if multiple classes)
|
||||||
|
t = torch.full_like(ps[:, 15:], cn, device=device) # targets
|
||||||
|
t[range(n), tcls[i]] = cp
|
||||||
|
lcls += BCEcls(ps[:, 15:], t) # BCE
|
||||||
|
|
||||||
|
# Append targets to text file
|
||||||
|
# with open('targets.txt', 'a') as file:
|
||||||
|
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
||||||
|
|
||||||
|
#landmarks loss
|
||||||
|
#plandmarks = ps[:,5:15].sigmoid() * 8. - 4.
|
||||||
|
plandmarks = ps[:,5:15]
|
||||||
|
|
||||||
|
plandmarks[:, 0:2] = plandmarks[:, 0:2] * anchors[i]
|
||||||
|
plandmarks[:, 2:4] = plandmarks[:, 2:4] * anchors[i]
|
||||||
|
plandmarks[:, 4:6] = plandmarks[:, 4:6] * anchors[i]
|
||||||
|
plandmarks[:, 6:8] = plandmarks[:, 6:8] * anchors[i]
|
||||||
|
plandmarks[:, 8:10] = plandmarks[:,8:10] * anchors[i]
|
||||||
|
|
||||||
|
lmark += landmarks_loss(plandmarks, tlandmarks[i], lmks_mask[i])
|
||||||
|
|
||||||
|
|
||||||
|
lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss
|
||||||
|
|
||||||
|
s = 3 / no # output count scaling
|
||||||
|
lbox *= h['box'] * s
|
||||||
|
lobj *= h['obj'] * s * (1.4 if no == 4 else 1.)
|
||||||
|
lcls *= h['cls'] * s
|
||||||
|
lmark *= h['landmark'] * s
|
||||||
|
|
||||||
|
bs = tobj.shape[0] # batch size
|
||||||
|
|
||||||
|
loss = lbox + lobj + lcls + lmark
|
||||||
|
return loss * bs, torch.cat((lbox, lobj, lcls, lmark, loss)).detach()
|
||||||
|
|
||||||
|
|
||||||
|
def build_targets(p, targets, model):
|
||||||
|
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
||||||
|
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
|
||||||
|
na, nt = det.na, targets.shape[0] # number of anchors, targets
|
||||||
|
tcls, tbox, indices, anch, landmarks, lmks_mask = [], [], [], [], [], []
|
||||||
|
#gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
|
||||||
|
gain = torch.ones(17, device=targets.device)
|
||||||
|
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
||||||
|
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
||||||
|
|
||||||
|
g = 0.5 # bias
|
||||||
|
off = torch.tensor([[0, 0],
|
||||||
|
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
||||||
|
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
||||||
|
], device=targets.device).float() * g # offsets
|
||||||
|
|
||||||
|
for i in range(det.nl):
|
||||||
|
anchors = det.anchors[i]
|
||||||
|
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
||||||
|
#landmarks 10
|
||||||
|
gain[6:16] = torch.tensor(p[i].shape)[[3, 2, 3, 2, 3, 2, 3, 2, 3, 2]] # xyxy gain
|
||||||
|
|
||||||
|
# Match targets to anchors
|
||||||
|
t = targets * gain
|
||||||
|
if nt:
|
||||||
|
# Matches
|
||||||
|
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
||||||
|
j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare
|
||||||
|
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
||||||
|
t = t[j] # filter
|
||||||
|
|
||||||
|
# Offsets
|
||||||
|
gxy = t[:, 2:4] # grid xy
|
||||||
|
gxi = gain[[2, 3]] - gxy # inverse
|
||||||
|
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
||||||
|
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
||||||
|
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
||||||
|
t = t.repeat((5, 1, 1))[j]
|
||||||
|
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
||||||
|
else:
|
||||||
|
t = targets[0]
|
||||||
|
offsets = 0
|
||||||
|
|
||||||
|
# Define
|
||||||
|
b, c = t[:, :2].long().T # image, class
|
||||||
|
gxy = t[:, 2:4] # grid xy
|
||||||
|
gwh = t[:, 4:6] # grid wh
|
||||||
|
gij = (gxy - offsets).long()
|
||||||
|
gi, gj = gij.T # grid xy indices
|
||||||
|
|
||||||
|
# Append
|
||||||
|
a = t[:, 16].long() # anchor indices
|
||||||
|
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
|
||||||
|
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
||||||
|
anch.append(anchors[a]) # anchors
|
||||||
|
tcls.append(c) # class
|
||||||
|
|
||||||
|
#landmarks
|
||||||
|
lks = t[:,6:16]
|
||||||
|
#lks_mask = lks > 0
|
||||||
|
#lks_mask = lks_mask.float()
|
||||||
|
lks_mask = torch.where(lks < 0, torch.full_like(lks, 0.), torch.full_like(lks, 1.0))
|
||||||
|
|
||||||
|
#应该是关键点的坐标除以anch的宽高才对,便于模型学习。使用gwh会导致不同关键点的编码不同,没有统一的参考标准
|
||||||
|
|
||||||
|
lks[:, [0, 1]] = (lks[:, [0, 1]] - gij)
|
||||||
|
lks[:, [2, 3]] = (lks[:, [2, 3]] - gij)
|
||||||
|
lks[:, [4, 5]] = (lks[:, [4, 5]] - gij)
|
||||||
|
lks[:, [6, 7]] = (lks[:, [6, 7]] - gij)
|
||||||
|
lks[:, [8, 9]] = (lks[:, [8, 9]] - gij)
|
||||||
|
|
||||||
|
'''
|
||||||
|
#anch_w = torch.ones(5, device=targets.device).fill_(anchors[0][0])
|
||||||
|
#anch_wh = torch.ones(5, device=targets.device)
|
||||||
|
anch_f_0 = (a == 0).unsqueeze(1).repeat(1, 5)
|
||||||
|
anch_f_1 = (a == 1).unsqueeze(1).repeat(1, 5)
|
||||||
|
anch_f_2 = (a == 2).unsqueeze(1).repeat(1, 5)
|
||||||
|
lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_0, lks[:, [0, 2, 4, 6, 8]] / anchors[0][0], lks[:, [0, 2, 4, 6, 8]])
|
||||||
|
lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_1, lks[:, [0, 2, 4, 6, 8]] / anchors[1][0], lks[:, [0, 2, 4, 6, 8]])
|
||||||
|
lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_2, lks[:, [0, 2, 4, 6, 8]] / anchors[2][0], lks[:, [0, 2, 4, 6, 8]])
|
||||||
|
|
||||||
|
lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_0, lks[:, [1, 3, 5, 7, 9]] / anchors[0][1], lks[:, [1, 3, 5, 7, 9]])
|
||||||
|
lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_1, lks[:, [1, 3, 5, 7, 9]] / anchors[1][1], lks[:, [1, 3, 5, 7, 9]])
|
||||||
|
lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_2, lks[:, [1, 3, 5, 7, 9]] / anchors[2][1], lks[:, [1, 3, 5, 7, 9]])
|
||||||
|
|
||||||
|
#new_lks = lks[lks_mask>0]
|
||||||
|
#print('new_lks: min --- ', torch.min(new_lks), ' max --- ', torch.max(new_lks))
|
||||||
|
|
||||||
|
lks_mask_1 = torch.where(lks < -3, torch.full_like(lks, 0.), torch.full_like(lks, 1.0))
|
||||||
|
lks_mask_2 = torch.where(lks > 3, torch.full_like(lks, 0.), torch.full_like(lks, 1.0))
|
||||||
|
|
||||||
|
lks_mask_new = lks_mask * lks_mask_1 * lks_mask_2
|
||||||
|
lks_mask_new[:, 0] = lks_mask_new[:, 0] * lks_mask_new[:, 1]
|
||||||
|
lks_mask_new[:, 1] = lks_mask_new[:, 0] * lks_mask_new[:, 1]
|
||||||
|
lks_mask_new[:, 2] = lks_mask_new[:, 2] * lks_mask_new[:, 3]
|
||||||
|
lks_mask_new[:, 3] = lks_mask_new[:, 2] * lks_mask_new[:, 3]
|
||||||
|
lks_mask_new[:, 4] = lks_mask_new[:, 4] * lks_mask_new[:, 5]
|
||||||
|
lks_mask_new[:, 5] = lks_mask_new[:, 4] * lks_mask_new[:, 5]
|
||||||
|
lks_mask_new[:, 6] = lks_mask_new[:, 6] * lks_mask_new[:, 7]
|
||||||
|
lks_mask_new[:, 7] = lks_mask_new[:, 6] * lks_mask_new[:, 7]
|
||||||
|
lks_mask_new[:, 8] = lks_mask_new[:, 8] * lks_mask_new[:, 9]
|
||||||
|
lks_mask_new[:, 9] = lks_mask_new[:, 8] * lks_mask_new[:, 9]
|
||||||
|
'''
|
||||||
|
lks_mask_new = lks_mask
|
||||||
|
lmks_mask.append(lks_mask_new)
|
||||||
|
landmarks.append(lks)
|
||||||
|
#print('lks: ', lks.size())
|
||||||
|
|
||||||
|
return tcls, tbox, indices, anch, landmarks, lmks_mask
|
||||||
200
yolov5-face_Jan1/utils/metrics.py
Normal file
200
yolov5-face_Jan1/utils/metrics.py
Normal file
@ -0,0 +1,200 @@
|
|||||||
|
# Model validation metrics
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from . import general
|
||||||
|
|
||||||
|
|
||||||
|
def fitness(x):
|
||||||
|
# Model fitness as a weighted combination of metrics
|
||||||
|
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
||||||
|
return (x[:, :4] * w).sum(1)
|
||||||
|
|
||||||
|
|
||||||
|
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='precision-recall_curve.png', names=[]):
|
||||||
|
""" Compute the average precision, given the recall and precision curves.
|
||||||
|
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
||||||
|
# Arguments
|
||||||
|
tp: True positives (nparray, nx1 or nx10).
|
||||||
|
conf: Objectness value from 0-1 (nparray).
|
||||||
|
pred_cls: Predicted object classes (nparray).
|
||||||
|
target_cls: True object classes (nparray).
|
||||||
|
plot: Plot precision-recall curve at mAP@0.5
|
||||||
|
save_dir: Plot save directory
|
||||||
|
# Returns
|
||||||
|
The average precision as computed in py-faster-rcnn.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Sort by objectness
|
||||||
|
i = np.argsort(-conf)
|
||||||
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
||||||
|
|
||||||
|
# Find unique classes
|
||||||
|
unique_classes = np.unique(target_cls)
|
||||||
|
|
||||||
|
# Create Precision-Recall curve and compute AP for each class
|
||||||
|
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
||||||
|
pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
|
||||||
|
s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
|
||||||
|
ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
|
||||||
|
for ci, c in enumerate(unique_classes):
|
||||||
|
i = pred_cls == c
|
||||||
|
n_l = (target_cls == c).sum() # number of labels
|
||||||
|
n_p = i.sum() # number of predictions
|
||||||
|
|
||||||
|
if n_p == 0 or n_l == 0:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
# Accumulate FPs and TPs
|
||||||
|
fpc = (1 - tp[i]).cumsum(0)
|
||||||
|
tpc = tp[i].cumsum(0)
|
||||||
|
|
||||||
|
# Recall
|
||||||
|
recall = tpc / (n_l + 1e-16) # recall curve
|
||||||
|
r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases
|
||||||
|
|
||||||
|
# Precision
|
||||||
|
precision = tpc / (tpc + fpc) # precision curve
|
||||||
|
p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score
|
||||||
|
|
||||||
|
# AP from recall-precision curve
|
||||||
|
for j in range(tp.shape[1]):
|
||||||
|
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
||||||
|
if plot and (j == 0):
|
||||||
|
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
||||||
|
|
||||||
|
# Compute F1 score (harmonic mean of precision and recall)
|
||||||
|
f1 = 2 * p * r / (p + r + 1e-16)
|
||||||
|
|
||||||
|
if plot:
|
||||||
|
plot_pr_curve(px, py, ap, save_dir, names)
|
||||||
|
|
||||||
|
return p, r, ap, f1, unique_classes.astype('int32')
|
||||||
|
|
||||||
|
|
||||||
|
def compute_ap(recall, precision):
|
||||||
|
""" Compute the average precision, given the recall and precision curves
|
||||||
|
# Arguments
|
||||||
|
recall: The recall curve (list)
|
||||||
|
precision: The precision curve (list)
|
||||||
|
# Returns
|
||||||
|
Average precision, precision curve, recall curve
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Append sentinel values to beginning and end
|
||||||
|
mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
|
||||||
|
mpre = np.concatenate(([1.], precision, [0.]))
|
||||||
|
|
||||||
|
# Compute the precision envelope
|
||||||
|
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
||||||
|
|
||||||
|
# Integrate area under curve
|
||||||
|
method = 'interp' # methods: 'continuous', 'interp'
|
||||||
|
if method == 'interp':
|
||||||
|
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
||||||
|
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
||||||
|
else: # 'continuous'
|
||||||
|
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
||||||
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
||||||
|
|
||||||
|
return ap, mpre, mrec
|
||||||
|
|
||||||
|
|
||||||
|
class ConfusionMatrix:
|
||||||
|
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
|
||||||
|
def __init__(self, nc, conf=0.25, iou_thres=0.45):
|
||||||
|
self.matrix = np.zeros((nc + 1, nc + 1))
|
||||||
|
self.nc = nc # number of classes
|
||||||
|
self.conf = conf
|
||||||
|
self.iou_thres = iou_thres
|
||||||
|
|
||||||
|
def process_batch(self, detections, labels):
|
||||||
|
"""
|
||||||
|
Return intersection-over-union (Jaccard index) of boxes.
|
||||||
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||||
|
Arguments:
|
||||||
|
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
||||||
|
labels (Array[M, 5]), class, x1, y1, x2, y2
|
||||||
|
Returns:
|
||||||
|
None, updates confusion matrix accordingly
|
||||||
|
"""
|
||||||
|
detections = detections[detections[:, 4] > self.conf]
|
||||||
|
gt_classes = labels[:, 0].int()
|
||||||
|
detection_classes = detections[:, 5].int()
|
||||||
|
iou = general.box_iou(labels[:, 1:], detections[:, :4])
|
||||||
|
|
||||||
|
x = torch.where(iou > self.iou_thres)
|
||||||
|
if x[0].shape[0]:
|
||||||
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
|
||||||
|
if x[0].shape[0] > 1:
|
||||||
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||||
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
||||||
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||||
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
||||||
|
else:
|
||||||
|
matches = np.zeros((0, 3))
|
||||||
|
|
||||||
|
n = matches.shape[0] > 0
|
||||||
|
m0, m1, _ = matches.transpose().astype(np.int16)
|
||||||
|
for i, gc in enumerate(gt_classes):
|
||||||
|
j = m0 == i
|
||||||
|
if n and sum(j) == 1:
|
||||||
|
self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
|
||||||
|
else:
|
||||||
|
self.matrix[gc, self.nc] += 1 # background FP
|
||||||
|
|
||||||
|
if n:
|
||||||
|
for i, dc in enumerate(detection_classes):
|
||||||
|
if not any(m1 == i):
|
||||||
|
self.matrix[self.nc, dc] += 1 # background FN
|
||||||
|
|
||||||
|
def matrix(self):
|
||||||
|
return self.matrix
|
||||||
|
|
||||||
|
def plot(self, save_dir='', names=()):
|
||||||
|
try:
|
||||||
|
import seaborn as sn
|
||||||
|
|
||||||
|
array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
|
||||||
|
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
|
||||||
|
|
||||||
|
fig = plt.figure(figsize=(12, 9), tight_layout=True)
|
||||||
|
sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
|
||||||
|
labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
|
||||||
|
sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
|
||||||
|
xticklabels=names + ['background FN'] if labels else "auto",
|
||||||
|
yticklabels=names + ['background FP'] if labels else "auto").set_facecolor((1, 1, 1))
|
||||||
|
fig.axes[0].set_xlabel('True')
|
||||||
|
fig.axes[0].set_ylabel('Predicted')
|
||||||
|
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
|
||||||
|
except Exception as e:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def print(self):
|
||||||
|
for i in range(self.nc + 1):
|
||||||
|
print(' '.join(map(str, self.matrix[i])))
|
||||||
|
|
||||||
|
|
||||||
|
# Plots ----------------------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
def plot_pr_curve(px, py, ap, save_dir='.', names=()):
|
||||||
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
||||||
|
py = np.stack(py, axis=1)
|
||||||
|
|
||||||
|
if 0 < len(names) < 21: # show mAP in legend if < 10 classes
|
||||||
|
for i, y in enumerate(py.T):
|
||||||
|
ax.plot(px, y, linewidth=1, label=f'{names[i]} %.3f' % ap[i, 0]) # plot(recall, precision)
|
||||||
|
else:
|
||||||
|
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
|
||||||
|
|
||||||
|
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
|
||||||
|
ax.set_xlabel('Recall')
|
||||||
|
ax.set_ylabel('Precision')
|
||||||
|
ax.set_xlim(0, 1)
|
||||||
|
ax.set_ylim(0, 1)
|
||||||
|
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
||||||
|
fig.savefig(Path(save_dir) / 'precision_recall_curve.png', dpi=250)
|
||||||
413
yolov5-face_Jan1/utils/plots.py
Normal file
413
yolov5-face_Jan1/utils/plots.py
Normal file
@ -0,0 +1,413 @@
|
|||||||
|
# Plotting utils
|
||||||
|
|
||||||
|
import glob
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
from copy import copy
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import matplotlib
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import seaborn as sns
|
||||||
|
import torch
|
||||||
|
import yaml
|
||||||
|
from PIL import Image, ImageDraw
|
||||||
|
from scipy.signal import butter, filtfilt
|
||||||
|
|
||||||
|
from utils.general import xywh2xyxy, xyxy2xywh
|
||||||
|
from utils.metrics import fitness
|
||||||
|
|
||||||
|
# Settings
|
||||||
|
matplotlib.rc('font', **{'size': 11})
|
||||||
|
matplotlib.use('Agg') # for writing to files only
|
||||||
|
|
||||||
|
|
||||||
|
def color_list():
|
||||||
|
# Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
|
||||||
|
def hex2rgb(h):
|
||||||
|
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
|
||||||
|
|
||||||
|
return [hex2rgb(h) for h in plt.rcParams['axes.prop_cycle'].by_key()['color']]
|
||||||
|
|
||||||
|
|
||||||
|
def hist2d(x, y, n=100):
|
||||||
|
# 2d histogram used in labels.png and evolve.png
|
||||||
|
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
|
||||||
|
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
|
||||||
|
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
|
||||||
|
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
|
||||||
|
return np.log(hist[xidx, yidx])
|
||||||
|
|
||||||
|
|
||||||
|
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
|
||||||
|
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
|
||||||
|
def butter_lowpass(cutoff, fs, order):
|
||||||
|
nyq = 0.5 * fs
|
||||||
|
normal_cutoff = cutoff / nyq
|
||||||
|
return butter(order, normal_cutoff, btype='low', analog=False)
|
||||||
|
|
||||||
|
b, a = butter_lowpass(cutoff, fs, order=order)
|
||||||
|
return filtfilt(b, a, data) # forward-backward filter
|
||||||
|
|
||||||
|
|
||||||
|
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
|
||||||
|
# Plots one bounding box on image img
|
||||||
|
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
|
||||||
|
color = color or [random.randint(0, 255) for _ in range(3)]
|
||||||
|
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
|
||||||
|
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
|
||||||
|
if label:
|
||||||
|
tf = max(tl - 1, 1) # font thickness
|
||||||
|
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
||||||
|
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
|
||||||
|
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
|
||||||
|
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
|
||||||
|
# Compares the two methods for width-height anchor multiplication
|
||||||
|
# https://github.com/ultralytics/yolov3/issues/168
|
||||||
|
x = np.arange(-4.0, 4.0, .1)
|
||||||
|
ya = np.exp(x)
|
||||||
|
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
|
||||||
|
|
||||||
|
fig = plt.figure(figsize=(6, 3), tight_layout=True)
|
||||||
|
plt.plot(x, ya, '.-', label='YOLOv3')
|
||||||
|
plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2')
|
||||||
|
plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6')
|
||||||
|
plt.xlim(left=-4, right=4)
|
||||||
|
plt.ylim(bottom=0, top=6)
|
||||||
|
plt.xlabel('input')
|
||||||
|
plt.ylabel('output')
|
||||||
|
plt.grid()
|
||||||
|
plt.legend()
|
||||||
|
fig.savefig('comparison.png', dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def output_to_target(output):
|
||||||
|
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
|
||||||
|
targets = []
|
||||||
|
for i, o in enumerate(output):
|
||||||
|
for *box, conf, cls in o.cpu().numpy():
|
||||||
|
targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
|
||||||
|
return np.array(targets)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
|
||||||
|
# Plot image grid with labels
|
||||||
|
|
||||||
|
if isinstance(images, torch.Tensor):
|
||||||
|
images = images.cpu().float().numpy()
|
||||||
|
if isinstance(targets, torch.Tensor):
|
||||||
|
targets = targets.cpu().numpy()
|
||||||
|
|
||||||
|
# un-normalise
|
||||||
|
if np.max(images[0]) <= 1:
|
||||||
|
images *= 255
|
||||||
|
|
||||||
|
tl = 3 # line thickness
|
||||||
|
tf = max(tl - 1, 1) # font thickness
|
||||||
|
bs, _, h, w = images.shape # batch size, _, height, width
|
||||||
|
bs = min(bs, max_subplots) # limit plot images
|
||||||
|
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
||||||
|
|
||||||
|
# Check if we should resize
|
||||||
|
scale_factor = max_size / max(h, w)
|
||||||
|
if scale_factor < 1:
|
||||||
|
h = math.ceil(scale_factor * h)
|
||||||
|
w = math.ceil(scale_factor * w)
|
||||||
|
|
||||||
|
# colors = color_list() # list of colors
|
||||||
|
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
|
||||||
|
for i, img in enumerate(images):
|
||||||
|
if i == max_subplots: # if last batch has fewer images than we expect
|
||||||
|
break
|
||||||
|
|
||||||
|
block_x = int(w * (i // ns))
|
||||||
|
block_y = int(h * (i % ns))
|
||||||
|
|
||||||
|
img = img.transpose(1, 2, 0)
|
||||||
|
if scale_factor < 1:
|
||||||
|
img = cv2.resize(img, (w, h))
|
||||||
|
|
||||||
|
mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
|
||||||
|
if len(targets) > 0:
|
||||||
|
image_targets = targets[targets[:, 0] == i]
|
||||||
|
boxes = xywh2xyxy(image_targets[:, 2:6]).T
|
||||||
|
classes = image_targets[:, 1].astype('int')
|
||||||
|
labels = image_targets.shape[1] == 6 # labels if no conf column
|
||||||
|
conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
|
||||||
|
|
||||||
|
if boxes.shape[1]:
|
||||||
|
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
||||||
|
boxes[[0, 2]] *= w # scale to pixels
|
||||||
|
boxes[[1, 3]] *= h
|
||||||
|
elif scale_factor < 1: # absolute coords need scale if image scales
|
||||||
|
boxes *= scale_factor
|
||||||
|
boxes[[0, 2]] += block_x
|
||||||
|
boxes[[1, 3]] += block_y
|
||||||
|
for j, box in enumerate(boxes.T):
|
||||||
|
cls = int(classes[j])
|
||||||
|
# color = colors[cls % len(colors)]
|
||||||
|
cls = names[cls] if names else cls
|
||||||
|
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
||||||
|
label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
|
||||||
|
plot_one_box(box, mosaic, label=label, color=None, line_thickness=tl)
|
||||||
|
|
||||||
|
# Draw image filename labels
|
||||||
|
if paths:
|
||||||
|
label = Path(paths[i]).name[:40] # trim to 40 char
|
||||||
|
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
||||||
|
cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
|
||||||
|
lineType=cv2.LINE_AA)
|
||||||
|
|
||||||
|
# Image border
|
||||||
|
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
|
||||||
|
|
||||||
|
if fname:
|
||||||
|
r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
|
||||||
|
mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
|
||||||
|
# cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
|
||||||
|
Image.fromarray(mosaic).save(fname) # PIL save
|
||||||
|
return mosaic
|
||||||
|
|
||||||
|
|
||||||
|
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
|
||||||
|
# Plot LR simulating training for full epochs
|
||||||
|
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
|
||||||
|
y = []
|
||||||
|
for _ in range(epochs):
|
||||||
|
scheduler.step()
|
||||||
|
y.append(optimizer.param_groups[0]['lr'])
|
||||||
|
plt.plot(y, '.-', label='LR')
|
||||||
|
plt.xlabel('epoch')
|
||||||
|
plt.ylabel('LR')
|
||||||
|
plt.grid()
|
||||||
|
plt.xlim(0, epochs)
|
||||||
|
plt.ylim(0)
|
||||||
|
plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
|
def plot_test_txt(): # from utils.plots import *; plot_test()
|
||||||
|
# Plot test.txt histograms
|
||||||
|
x = np.loadtxt('test.txt', dtype=np.float32)
|
||||||
|
box = xyxy2xywh(x[:, :4])
|
||||||
|
cx, cy = box[:, 0], box[:, 1]
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
|
||||||
|
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
|
||||||
|
ax.set_aspect('equal')
|
||||||
|
plt.savefig('hist2d.png', dpi=300)
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
|
||||||
|
ax[0].hist(cx, bins=600)
|
||||||
|
ax[1].hist(cy, bins=600)
|
||||||
|
plt.savefig('hist1d.png', dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
|
||||||
|
# Plot targets.txt histograms
|
||||||
|
x = np.loadtxt('targets.txt', dtype=np.float32).T
|
||||||
|
s = ['x targets', 'y targets', 'width targets', 'height targets']
|
||||||
|
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
|
||||||
|
ax = ax.ravel()
|
||||||
|
for i in range(4):
|
||||||
|
ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
|
||||||
|
ax[i].legend()
|
||||||
|
ax[i].set_title(s[i])
|
||||||
|
plt.savefig('targets.jpg', dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_study_txt(path='study/', x=None): # from utils.plots import *; plot_study_txt()
|
||||||
|
# Plot study.txt generated by test.py
|
||||||
|
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
|
||||||
|
ax = ax.ravel()
|
||||||
|
|
||||||
|
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
|
||||||
|
for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']]:
|
||||||
|
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
|
||||||
|
x = np.arange(y.shape[1]) if x is None else np.array(x)
|
||||||
|
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
|
||||||
|
for i in range(7):
|
||||||
|
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
|
||||||
|
ax[i].set_title(s[i])
|
||||||
|
|
||||||
|
j = y[3].argmax() + 1
|
||||||
|
ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8,
|
||||||
|
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
|
||||||
|
|
||||||
|
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
|
||||||
|
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
|
||||||
|
|
||||||
|
ax2.grid()
|
||||||
|
ax2.set_yticks(np.arange(30, 60, 5))
|
||||||
|
ax2.set_xlim(0, 30)
|
||||||
|
ax2.set_ylim(29, 51)
|
||||||
|
ax2.set_xlabel('GPU Speed (ms/img)')
|
||||||
|
ax2.set_ylabel('COCO AP val')
|
||||||
|
ax2.legend(loc='lower right')
|
||||||
|
plt.savefig('test_study.png', dpi=300)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_labels(labels, save_dir=Path(''), loggers=None):
|
||||||
|
# plot dataset labels
|
||||||
|
print('Plotting labels... ')
|
||||||
|
c, b = labels[:, 0], labels[:, 1:5].transpose() # classes, boxes
|
||||||
|
nc = int(c.max() + 1) # number of classes
|
||||||
|
colors = color_list()
|
||||||
|
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
|
||||||
|
|
||||||
|
# seaborn correlogram
|
||||||
|
sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
|
||||||
|
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
# matplotlib labels
|
||||||
|
matplotlib.use('svg') # faster
|
||||||
|
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
|
||||||
|
ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
|
||||||
|
ax[0].set_xlabel('classes')
|
||||||
|
sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
|
||||||
|
sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
|
||||||
|
|
||||||
|
# rectangles
|
||||||
|
labels[:, 1:3] = 0.5 # center
|
||||||
|
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
|
||||||
|
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
|
||||||
|
# for cls, *box in labels[:1000]:
|
||||||
|
# ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot
|
||||||
|
ax[1].imshow(img)
|
||||||
|
ax[1].axis('off')
|
||||||
|
|
||||||
|
for a in [0, 1, 2, 3]:
|
||||||
|
for s in ['top', 'right', 'left', 'bottom']:
|
||||||
|
ax[a].spines[s].set_visible(False)
|
||||||
|
|
||||||
|
plt.savefig(save_dir / 'labels.jpg', dpi=200)
|
||||||
|
matplotlib.use('Agg')
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
# loggers
|
||||||
|
for k, v in loggers.items() or {}:
|
||||||
|
if k == 'wandb' and v:
|
||||||
|
v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]})
|
||||||
|
|
||||||
|
|
||||||
|
def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
|
||||||
|
# Plot hyperparameter evolution results in evolve.txt
|
||||||
|
with open(yaml_file) as f:
|
||||||
|
hyp = yaml.load(f, Loader=yaml.SafeLoader)
|
||||||
|
x = np.loadtxt('evolve.txt', ndmin=2)
|
||||||
|
f = fitness(x)
|
||||||
|
# weights = (f - f.min()) ** 2 # for weighted results
|
||||||
|
plt.figure(figsize=(10, 12), tight_layout=True)
|
||||||
|
matplotlib.rc('font', **{'size': 8})
|
||||||
|
for i, (k, v) in enumerate(hyp.items()):
|
||||||
|
y = x[:, i + 7]
|
||||||
|
# mu = (y * weights).sum() / weights.sum() # best weighted result
|
||||||
|
mu = y[f.argmax()] # best single result
|
||||||
|
plt.subplot(6, 5, i + 1)
|
||||||
|
plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
|
||||||
|
plt.plot(mu, f.max(), 'k+', markersize=15)
|
||||||
|
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
|
||||||
|
if i % 5 != 0:
|
||||||
|
plt.yticks([])
|
||||||
|
print('%15s: %.3g' % (k, mu))
|
||||||
|
plt.savefig('evolve.png', dpi=200)
|
||||||
|
print('\nPlot saved as evolve.png')
|
||||||
|
|
||||||
|
|
||||||
|
def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
|
||||||
|
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
|
||||||
|
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
|
||||||
|
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
|
||||||
|
files = list(Path(save_dir).glob('frames*.txt'))
|
||||||
|
for fi, f in enumerate(files):
|
||||||
|
try:
|
||||||
|
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
|
||||||
|
n = results.shape[1] # number of rows
|
||||||
|
x = np.arange(start, min(stop, n) if stop else n)
|
||||||
|
results = results[:, x]
|
||||||
|
t = (results[0] - results[0].min()) # set t0=0s
|
||||||
|
results[0] = x
|
||||||
|
for i, a in enumerate(ax):
|
||||||
|
if i < len(results):
|
||||||
|
label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
|
||||||
|
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
|
||||||
|
a.set_title(s[i])
|
||||||
|
a.set_xlabel('time (s)')
|
||||||
|
# if fi == len(files) - 1:
|
||||||
|
# a.set_ylim(bottom=0)
|
||||||
|
for side in ['top', 'right']:
|
||||||
|
a.spines[side].set_visible(False)
|
||||||
|
else:
|
||||||
|
a.remove()
|
||||||
|
except Exception as e:
|
||||||
|
print('Warning: Plotting error for %s; %s' % (f, e))
|
||||||
|
|
||||||
|
ax[1].legend()
|
||||||
|
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
|
||||||
|
# Plot training 'results*.txt', overlaying train and val losses
|
||||||
|
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
|
||||||
|
t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
|
||||||
|
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
|
||||||
|
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
||||||
|
n = results.shape[1] # number of rows
|
||||||
|
x = range(start, min(stop, n) if stop else n)
|
||||||
|
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
|
||||||
|
ax = ax.ravel()
|
||||||
|
for i in range(5):
|
||||||
|
for j in [i, i + 5]:
|
||||||
|
y = results[j, x]
|
||||||
|
ax[i].plot(x, y, marker='.', label=s[j])
|
||||||
|
# y_smooth = butter_lowpass_filtfilt(y)
|
||||||
|
# ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
|
||||||
|
|
||||||
|
ax[i].set_title(t[i])
|
||||||
|
ax[i].legend()
|
||||||
|
ax[i].set_ylabel(f) if i == 0 else None # add filename
|
||||||
|
fig.savefig(f.replace('.txt', '.png'), dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
|
||||||
|
# Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
|
||||||
|
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
|
||||||
|
ax = ax.ravel()
|
||||||
|
s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
|
||||||
|
'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
|
||||||
|
if bucket:
|
||||||
|
# files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
|
||||||
|
files = ['results%g.txt' % x for x in id]
|
||||||
|
c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
|
||||||
|
os.system(c)
|
||||||
|
else:
|
||||||
|
files = list(Path(save_dir).glob('results*.txt'))
|
||||||
|
assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
|
||||||
|
for fi, f in enumerate(files):
|
||||||
|
try:
|
||||||
|
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
||||||
|
n = results.shape[1] # number of rows
|
||||||
|
x = range(start, min(stop, n) if stop else n)
|
||||||
|
for i in range(10):
|
||||||
|
y = results[i, x]
|
||||||
|
if i in [0, 1, 2, 5, 6, 7]:
|
||||||
|
y[y == 0] = np.nan # don't show zero loss values
|
||||||
|
# y /= y[0] # normalize
|
||||||
|
label = labels[fi] if len(labels) else f.stem
|
||||||
|
ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
|
||||||
|
ax[i].set_title(s[i])
|
||||||
|
# if i in [5, 6, 7]: # share train and val loss y axes
|
||||||
|
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
||||||
|
except Exception as e:
|
||||||
|
print('Warning: Plotting error for %s; %s' % (f, e))
|
||||||
|
|
||||||
|
ax[1].legend()
|
||||||
|
fig.savefig(Path(save_dir) / 'results.png', dpi=200)
|
||||||
294
yolov5-face_Jan1/utils/torch_utils.py
Normal file
294
yolov5-face_Jan1/utils/torch_utils.py
Normal file
@ -0,0 +1,294 @@
|
|||||||
|
# PyTorch utils
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
import time
|
||||||
|
from contextlib import contextmanager
|
||||||
|
from copy import deepcopy
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.backends.cudnn as cudnn
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import torchvision
|
||||||
|
|
||||||
|
try:
|
||||||
|
import thop # for FLOPS computation
|
||||||
|
except ImportError:
|
||||||
|
thop = None
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
@contextmanager
|
||||||
|
def torch_distributed_zero_first(local_rank: int):
|
||||||
|
"""
|
||||||
|
Decorator to make all processes in distributed training wait for each local_master to do something.
|
||||||
|
"""
|
||||||
|
if local_rank not in [-1, 0]:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
yield
|
||||||
|
if local_rank == 0:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
|
||||||
|
|
||||||
|
def init_torch_seeds(seed=0):
|
||||||
|
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
|
||||||
|
torch.manual_seed(seed)
|
||||||
|
if seed == 0: # slower, more reproducible
|
||||||
|
cudnn.benchmark, cudnn.deterministic = False, True
|
||||||
|
else: # faster, less reproducible
|
||||||
|
cudnn.benchmark, cudnn.deterministic = True, False
|
||||||
|
|
||||||
|
|
||||||
|
def git_describe():
|
||||||
|
# return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
|
||||||
|
if Path('.git').exists():
|
||||||
|
return subprocess.check_output('git describe --tags --long --always', shell=True).decode('utf-8')[:-1]
|
||||||
|
else:
|
||||||
|
return ''
|
||||||
|
|
||||||
|
|
||||||
|
def select_device(device='', batch_size=None):
|
||||||
|
# device = 'cpu' or '0' or '0,1,2,3'
|
||||||
|
s = f'YOLOv5 {git_describe()} torch {torch.__version__} ' # string
|
||||||
|
cpu = device.lower() == 'cpu'
|
||||||
|
if cpu:
|
||||||
|
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
|
||||||
|
elif device: # non-cpu device requested
|
||||||
|
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
|
||||||
|
assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
|
||||||
|
|
||||||
|
cuda = not cpu and torch.cuda.is_available()
|
||||||
|
if cuda:
|
||||||
|
n = torch.cuda.device_count()
|
||||||
|
if n > 1 and batch_size: # check that batch_size is compatible with device_count
|
||||||
|
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
|
||||||
|
space = ' ' * len(s)
|
||||||
|
for i, d in enumerate(device.split(',') if device else range(n)):
|
||||||
|
p = torch.cuda.get_device_properties(i)
|
||||||
|
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
|
||||||
|
else:
|
||||||
|
s += 'CPU\n'
|
||||||
|
|
||||||
|
logger.info(s) # skip a line
|
||||||
|
return torch.device('cuda:0' if cuda else 'cpu')
|
||||||
|
|
||||||
|
|
||||||
|
def time_synchronized():
|
||||||
|
# pytorch-accurate time
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
return time.time()
|
||||||
|
|
||||||
|
|
||||||
|
def profile(x, ops, n=100, device=None):
|
||||||
|
# profile a pytorch module or list of modules. Example usage:
|
||||||
|
# x = torch.randn(16, 3, 640, 640) # input
|
||||||
|
# m1 = lambda x: x * torch.sigmoid(x)
|
||||||
|
# m2 = nn.SiLU()
|
||||||
|
# profile(x, [m1, m2], n=100) # profile speed over 100 iterations
|
||||||
|
|
||||||
|
device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
||||||
|
x = x.to(device)
|
||||||
|
x.requires_grad = True
|
||||||
|
print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
|
||||||
|
print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
|
||||||
|
for m in ops if isinstance(ops, list) else [ops]:
|
||||||
|
m = m.to(device) if hasattr(m, 'to') else m # device
|
||||||
|
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
|
||||||
|
dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
|
||||||
|
try:
|
||||||
|
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
|
||||||
|
except:
|
||||||
|
flops = 0
|
||||||
|
|
||||||
|
for _ in range(n):
|
||||||
|
t[0] = time_synchronized()
|
||||||
|
y = m(x)
|
||||||
|
t[1] = time_synchronized()
|
||||||
|
try:
|
||||||
|
_ = y.sum().backward()
|
||||||
|
t[2] = time_synchronized()
|
||||||
|
except: # no backward method
|
||||||
|
t[2] = float('nan')
|
||||||
|
dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
|
||||||
|
dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
|
||||||
|
|
||||||
|
s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
|
||||||
|
s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
|
||||||
|
p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
|
||||||
|
print(f'{p:12.4g}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
|
||||||
|
|
||||||
|
|
||||||
|
def is_parallel(model):
|
||||||
|
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
||||||
|
|
||||||
|
|
||||||
|
def intersect_dicts(da, db, exclude=()):
|
||||||
|
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
||||||
|
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
|
||||||
|
|
||||||
|
|
||||||
|
def initialize_weights(model):
|
||||||
|
for m in model.modules():
|
||||||
|
t = type(m)
|
||||||
|
if t is nn.Conv2d:
|
||||||
|
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||||
|
elif t is nn.BatchNorm2d:
|
||||||
|
m.eps = 1e-3
|
||||||
|
m.momentum = 0.03
|
||||||
|
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
|
||||||
|
m.inplace = True
|
||||||
|
|
||||||
|
|
||||||
|
def find_modules(model, mclass=nn.Conv2d):
|
||||||
|
# Finds layer indices matching module class 'mclass'
|
||||||
|
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
|
||||||
|
|
||||||
|
|
||||||
|
def sparsity(model):
|
||||||
|
# Return global model sparsity
|
||||||
|
a, b = 0., 0.
|
||||||
|
for p in model.parameters():
|
||||||
|
a += p.numel()
|
||||||
|
b += (p == 0).sum()
|
||||||
|
return b / a
|
||||||
|
|
||||||
|
|
||||||
|
def prune(model, amount=0.3):
|
||||||
|
# Prune model to requested global sparsity
|
||||||
|
import torch.nn.utils.prune as prune
|
||||||
|
print('Pruning model... ', end='')
|
||||||
|
for name, m in model.named_modules():
|
||||||
|
if isinstance(m, nn.Conv2d):
|
||||||
|
prune.l1_unstructured(m, name='weight', amount=amount) # prune
|
||||||
|
prune.remove(m, 'weight') # make permanent
|
||||||
|
print(' %.3g global sparsity' % sparsity(model))
|
||||||
|
|
||||||
|
|
||||||
|
def fuse_conv_and_bn(conv, bn):
|
||||||
|
# Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
||||||
|
fusedconv = nn.Conv2d(conv.in_channels,
|
||||||
|
conv.out_channels,
|
||||||
|
kernel_size=conv.kernel_size,
|
||||||
|
stride=conv.stride,
|
||||||
|
padding=conv.padding,
|
||||||
|
groups=conv.groups,
|
||||||
|
bias=True).requires_grad_(False).to(conv.weight.device)
|
||||||
|
|
||||||
|
# prepare filters
|
||||||
|
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
||||||
|
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
||||||
|
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
|
||||||
|
|
||||||
|
# prepare spatial bias
|
||||||
|
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
|
||||||
|
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
||||||
|
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
||||||
|
|
||||||
|
return fusedconv
|
||||||
|
|
||||||
|
|
||||||
|
def model_info(model, verbose=False, img_size=640):
|
||||||
|
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
|
||||||
|
n_p = sum(x.numel() for x in model.parameters()) # number parameters
|
||||||
|
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
|
||||||
|
if verbose:
|
||||||
|
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
|
||||||
|
for i, (name, p) in enumerate(model.named_parameters()):
|
||||||
|
name = name.replace('module_list.', '')
|
||||||
|
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
|
||||||
|
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
|
||||||
|
|
||||||
|
try: # FLOPS
|
||||||
|
from thop import profile
|
||||||
|
stride = int(model.stride.max()) if hasattr(model, 'stride') else 32
|
||||||
|
img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
|
||||||
|
flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
|
||||||
|
img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
|
||||||
|
fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
|
||||||
|
except (ImportError, Exception):
|
||||||
|
fs = ''
|
||||||
|
|
||||||
|
logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
|
||||||
|
|
||||||
|
|
||||||
|
def load_classifier(name='resnet101', n=2):
|
||||||
|
# Loads a pretrained model reshaped to n-class output
|
||||||
|
model = torchvision.models.__dict__[name](pretrained=True)
|
||||||
|
|
||||||
|
# ResNet model properties
|
||||||
|
# input_size = [3, 224, 224]
|
||||||
|
# input_space = 'RGB'
|
||||||
|
# input_range = [0, 1]
|
||||||
|
# mean = [0.485, 0.456, 0.406]
|
||||||
|
# std = [0.229, 0.224, 0.225]
|
||||||
|
|
||||||
|
# Reshape output to n classes
|
||||||
|
filters = model.fc.weight.shape[1]
|
||||||
|
model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
|
||||||
|
model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
|
||||||
|
model.fc.out_features = n
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
|
||||||
|
# scales img(bs,3,y,x) by ratio constrained to gs-multiple
|
||||||
|
if ratio == 1.0:
|
||||||
|
return img
|
||||||
|
else:
|
||||||
|
h, w = img.shape[2:]
|
||||||
|
s = (int(h * ratio), int(w * ratio)) # new size
|
||||||
|
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
|
||||||
|
if not same_shape: # pad/crop img
|
||||||
|
h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
|
||||||
|
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
|
||||||
|
|
||||||
|
|
||||||
|
def copy_attr(a, b, include=(), exclude=()):
|
||||||
|
# Copy attributes from b to a, options to only include [...] and to exclude [...]
|
||||||
|
for k, v in b.__dict__.items():
|
||||||
|
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
setattr(a, k, v)
|
||||||
|
|
||||||
|
|
||||||
|
class ModelEMA:
|
||||||
|
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
|
||||||
|
Keep a moving average of everything in the model state_dict (parameters and buffers).
|
||||||
|
This is intended to allow functionality like
|
||||||
|
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
||||||
|
A smoothed version of the weights is necessary for some training schemes to perform well.
|
||||||
|
This class is sensitive where it is initialized in the sequence of model init,
|
||||||
|
GPU assignment and distributed training wrappers.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, model, decay=0.9999, updates=0):
|
||||||
|
# Create EMA
|
||||||
|
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
|
||||||
|
# if next(model.parameters()).device.type != 'cpu':
|
||||||
|
# self.ema.half() # FP16 EMA
|
||||||
|
self.updates = updates # number of EMA updates
|
||||||
|
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
|
||||||
|
for p in self.ema.parameters():
|
||||||
|
p.requires_grad_(False)
|
||||||
|
|
||||||
|
def update(self, model):
|
||||||
|
# Update EMA parameters
|
||||||
|
with torch.no_grad():
|
||||||
|
self.updates += 1
|
||||||
|
d = self.decay(self.updates)
|
||||||
|
|
||||||
|
msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
|
||||||
|
for k, v in self.ema.state_dict().items():
|
||||||
|
if v.dtype.is_floating_point:
|
||||||
|
v *= d
|
||||||
|
v += (1. - d) * msd[k].detach()
|
||||||
|
|
||||||
|
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
|
||||||
|
# Update EMA attributes
|
||||||
|
copy_attr(self.ema, model, include, exclude)
|
||||||
Loading…
Reference in New Issue
Block a user