some refactoring ahead of ukdi divorce proceedings...
This commit is contained in:
parent
a927da97db
commit
201133f7da
@ -1,135 +0,0 @@
|
||||
|
||||
from paravision.recognition.exceptions import ParavisionException
|
||||
from paravision.recognition.engine import Engine
|
||||
from paravision.recognition.sdk import SDK
|
||||
from openvino.inference_engine import Engineq
|
||||
|
||||
#from deepface.basemodels import VGGFace, OpenFace, Facenet, FbDeepFace, DeepID
|
||||
|
||||
|
||||
class Paravisionx(object):
|
||||
|
||||
def init(self):
|
||||
print("@@@ initialising paravision")
|
||||
|
||||
try:
|
||||
self.sdk = SDK(engine=Engine.AUTO)
|
||||
except ParavisionException:
|
||||
pass
|
||||
|
||||
def read(self, imgpath):
|
||||
if not os.path.exists(imgpath):
|
||||
print("File not found ",imgpath)
|
||||
return False
|
||||
self.imgpath = imgpath
|
||||
self.image = pru.load_image(imgpath)
|
||||
print(self.image)
|
||||
return True
|
||||
|
||||
def process(self):
|
||||
# Get all faces metadata
|
||||
print("Finding faces in %s" %(self.imgpath))
|
||||
faces = self.sdk.get_faces([self.image], qualities=True, landmarks=True, embeddings=True)
|
||||
print("Getting metadata")
|
||||
inferences = faces.image_inferences
|
||||
print("Getting best face")
|
||||
ix = inferences[0].most_prominent_face_index()
|
||||
print("Getting a mathematical mode of that best face")
|
||||
self.model = inferences[0].faces[ix].embedding
|
||||
print("Getting image quality scores..")
|
||||
self.score = round(1000*inferences[0].faces[ix].quality)
|
||||
print("Score was %d" %(self.score))
|
||||
return self.score
|
||||
|
||||
def compare(self,other):
|
||||
# Get face match score
|
||||
return self.sdk.get_match_score(self.model, other.model)
|
||||
|
||||
|
||||
#mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
|
||||
|
||||
|
||||
|
||||
def load(self, dev1, dev2, id_image_filepath, photo_image_filepath):
|
||||
self.dev1 = dev1
|
||||
self.dev2 = dev2
|
||||
try:
|
||||
# Load images
|
||||
self.id_image = load_image(id_image_filepath)
|
||||
self.photo_image = load_image(photo_image_filepath)
|
||||
print("++++++++++++++++ ",self.id_image)
|
||||
return True
|
||||
except:
|
||||
return None
|
||||
|
||||
|
||||
def get_faces(self):
|
||||
try:
|
||||
# Get all faces from images with qualities, landmarks, and embeddings
|
||||
self.inference_result = self.sdk.get_faces([self.id_image, self.photo_image], qualities=True, landmarks=True, embeddings=True)
|
||||
self.image_inference_result = self.inference_result.image_inferences
|
||||
if len(self.image_inference_result)==0:
|
||||
return "no inferences found"
|
||||
|
||||
# Get most prominent face
|
||||
self.id_face = self.image_inference_result[0].most_prominent_face_index()
|
||||
self.photo_face = self.image_inference_result[1].most_prominent_face_index()
|
||||
if self.id_face<0:
|
||||
return "no id face found"
|
||||
if self.photo_face<0:
|
||||
return "no live face found"
|
||||
|
||||
# Get numerical representation of faces (required for face match)
|
||||
if (len(self.image_inference_result)<2):
|
||||
return "ID or human face could not be recognised"
|
||||
self.id_emb = self.image_inference_result[0].faces[self.id_face].embedding
|
||||
self.photo_emb = self.image_inference_result[1].faces[self.photo_face].embedding
|
||||
|
||||
except Exception as ex:
|
||||
return "image processing exception "+str(ex)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
# return " id=%d photo=%d result=%d " % (self.id_face, self.photo_face, len(self.image_inference_result))
|
||||
|
||||
|
||||
def compute_scores(self):
|
||||
try:
|
||||
# Get image quality scores (how 'good' a face is)
|
||||
self.id_qual = self.image_inference_result[0].faces[self.id_face].quality
|
||||
self.photo_qual = self.image_inference_result[1].faces[self.photo_face].quality
|
||||
|
||||
self.id_qual = round(self.id_qual, 3)
|
||||
self.photo_qual = round(self.photo_qual, 3)
|
||||
|
||||
# Get face match score
|
||||
self.match_score = self.sdk.get_match_score(self.id_emb, self.photo_emb)
|
||||
|
||||
# Create .json
|
||||
self.face_match_json = {"device1":self.dev1,
|
||||
"device2":self.dev2,
|
||||
"passmark":500,
|
||||
"device1_qual":self.id_qual,
|
||||
"device2_qual":self.photo_qual,
|
||||
"match_score":self.match_score}
|
||||
|
||||
#return json.dumps(self.face_match_json)
|
||||
|
||||
#print(self.face_match_json)
|
||||
|
||||
# Send to core
|
||||
#url = "%s/notify/%s/%s" % (self.conf["core"], self.conf["identity"], face_match_json)
|
||||
#url = url.replace(" ", "%20") # Remove spaces
|
||||
#buf = []
|
||||
#req = urllib.request.Request( url )
|
||||
#with urllib.request.urlopen(req) as response:
|
||||
#print(response.read())
|
||||
|
||||
except Exception as ex:
|
||||
return str(ex)
|
||||
|
||||
|
||||
def get_scores(self):
|
||||
return json.dumps(self.face_match_json)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user