diff --git a/lib/yolov5-face_Jan1/LICENSE b/lib/yolov5-face_Jan1/LICENSE new file mode 100644 index 000000000..9e419e042 --- /dev/null +++ b/lib/yolov5-face_Jan1/LICENSE @@ -0,0 +1,674 @@ +GNU GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU General Public License is a free, copyleft license for +software and other kinds of works. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +the GNU General Public License is intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. We, the Free Software Foundation, use the +GNU General Public License for most of our software; it applies also to +any other work released this way by its authors. You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + To protect your rights, we need to prevent others from denying you +these rights or asking you to surrender the rights. Therefore, you have +certain responsibilities if you distribute copies of the software, or if +you modify it: responsibilities to respect the freedom of others. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must pass on to the recipients the same +freedoms that you received. You must make sure that they, too, receive +or can get the source code. And you must show them these terms so they +know their rights. + + Developers that use the GNU GPL protect your rights with two steps: +(1) assert copyright on the software, and (2) offer you this License +giving you legal permission to copy, distribute and/or modify it. + + For the developers' and authors' protection, the GPL clearly explains +that there is no warranty for this free software. For both users' and +authors' sake, the GPL requires that modified versions be marked as +changed, so that their problems will not be attributed erroneously to +authors of previous versions. + + Some devices are designed to deny users access to install or run +modified versions of the software inside them, although the manufacturer +can do so. This is fundamentally incompatible with the aim of +protecting users' freedom to change the software. The systematic +pattern of such abuse occurs in the area of products for individuals to +use, which is precisely where it is most unacceptable. Therefore, we +have designed this version of the GPL to prohibit the practice for those +products. If such problems arise substantially in other domains, we +stand ready to extend this provision to those domains in future versions +of the GPL, as needed to protect the freedom of users. + + Finally, every program is threatened constantly by software patents. +States should not allow patents to restrict development and use of +software on general-purpose computers, but in those that do, we wish to +avoid the special danger that patents applied to a free program could +make it effectively proprietary. To prevent this, the GPL assures that +patents cannot be used to render the program non-free. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Use with the GNU Affero General Public License. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU Affero General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the special requirements of the GNU Affero General Public License, +section 13, concerning interaction through a network will apply to the +combination as such. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + + Copyright (C) + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . + +Also add information on how to contact you by electronic and paper mail. + + If the program does terminal interaction, make it output a short +notice like this when it starts in an interactive mode: + + Copyright (C) + This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, your program's commands +might be different; for a GUI interface, you would use an "about box". + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU GPL, see +. + + The GNU General Public License does not permit incorporating your program +into proprietary programs. If your program is a subroutine library, you +may consider it more useful to permit linking proprietary applications with +the library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. But first, please read +. \ No newline at end of file diff --git a/lib/yolov5-face_Jan1/README.md b/lib/yolov5-face_Jan1/README.md new file mode 100755 index 000000000..40e4a51c1 --- /dev/null +++ b/lib/yolov5-face_Jan1/README.md @@ -0,0 +1,154 @@ +## What's New + +**2021.11**: BlazeFace +| Method | multi scale | Easy | Medium | Hard | Model Size(MB) | Link | +| -------------------- | ----------- | ----- | ------ | ----- | -------------- | ----- | +| BlazeFace | Ture | 88.5 | 85.5 | 73.1 | 0.472 | https://github.com/PaddlePaddle/PaddleDetection | +| BlazeFace-FPN-SSH | Ture | 90.7 | 88.3 | 79.3 | 0.479 | https://github.com/PaddlePaddle/PaddleDetection | +| yolov5-blazeface | True | 90.4 | 88.7 | 78.0 | 0.493 | https://pan.baidu.com/s/1RHp8wa615OuDVhsO-qrMpQ pwd:r3v3 | +| yolov5-blazeface-fpn | True | 90.8 | 89.4 | 79.1 | 0.493 | - | + +**2021.08**: Yolov5-face to TensorRT. +Inference time on rtx2080ti. +|Backbone|Pytorch |TensorRT_FP16 | +|:---:|:----:|:----:| +|yolov5n-0.5|11.9ms|2.9ms| +|yolov5n-face|20.7ms|2.5ms| +|yolov5s-face|25.2ms|3.0ms| +|yolov5m-face|61.2ms|3.0ms| +|yolov5l-face|109.6ms|3.6ms| +> Note: (1) Model inference (2) Resolution 640x640 + + +**2021.08**: Add new training dataset [Multi-Task-Facial](https://drive.google.com/file/d/1Pwd6ga06cDjeOX20RSC1KWiT888Q9IpM/view?usp=sharing),improve large face detection. +| Method | Easy | Medium | Hard | +| -------------------- | ----- | ------ | ----- | +| ***YOLOv5s*** | 94.56 | 92.92 | 83.84 | +| ***YOLOv5m*** | 95.46 | 93.87 | 85.54 | + + +## Introduction + +Yolov5-face is a real-time,high accuracy face detection. + +![](data/images/yolov5-face-p6.png) + +## Performance + +Single Scale Inference on VGA resolution(max side is equal to 640 and scale). + +***Large family*** + +| Method | Backbone | Easy | Medium | Hard | \#Params(M) | \#Flops(G) | +| :------------------ | -------------- | ----- | ------ | ----- | ----------- | ---------- | +| DSFD (CVPR19) | ResNet152 | 94.29 | 91.47 | 71.39 | 120.06 | 259.55 | +| RetinaFace (CVPR20) | ResNet50 | 94.92 | 91.90 | 64.17 | 29.50 | 37.59 | +| HAMBox (CVPR20) | ResNet50 | 95.27 | 93.76 | 76.75 | 30.24 | 43.28 | +| TinaFace (Arxiv20) | ResNet50 | 95.61 | 94.25 | 81.43 | 37.98 | 172.95 | +| SCRFD-34GF(Arxiv21) | Bottleneck Res | 96.06 | 94.92 | 85.29 | 9.80 | 34.13 | +| SCRFD-10GF(Arxiv21) | Basic Res | 95.16 | 93.87 | 83.05 | 3.86 | 9.98 | +| - | - | - | - | - | - | - | +| ***YOLOv5s*** | CSPNet | 94.67 | 92.75 | 83.03 | 7.075 | 5.751 | +| **YOLOv5s6** | CSPNet | 95.48 | 93.66 | 82.8 | 12.386 | 6.280 | +| ***YOLOv5m*** | CSPNet | 95.30 | 93.76 | 85.28 | 21.063 | 18.146 | +| **YOLOv5m6** | CSPNet | 95.66 | 94.1 | 85.2 | 35.485 | 19.773 | +| ***YOLOv5l*** | CSPNet | 95.78 | 94.30 | 86.13 | 46.627 | 41.607 | +| ***YOLOv5l6*** | CSPNet | 96.38 | 94.90 | 85.88 | 76.674 | 45.279 | + + +***Small family*** + +| Method | Backbone | Easy | Medium | Hard | \#Params(M) | \#Flops(G) | +| -------------------- | --------------- | ----- | ------ | ----- | ----------- | ---------- | +| RetinaFace (CVPR20 | MobileNet0.25 | 87.78 | 81.16 | 47.32 | 0.44 | 0.802 | +| FaceBoxes (IJCB17) | | 76.17 | 57.17 | 24.18 | 1.01 | 0.275 | +| SCRFD-0.5GF(Arxiv21) | Depth-wise Conv | 90.57 | 88.12 | 68.51 | 0.57 | 0.508 | +| SCRFD-2.5GF(Arxiv21) | Basic Res | 93.78 | 92.16 | 77.87 | 0.67 | 2.53 | +| - | - | - | - | - | - | - | +| ***YOLOv5n*** | ShuffleNetv2 | 93.74 | 91.54 | 80.32 | 1.726 | 2.111 | +| ***YOLOv5n-0.5*** | ShuffleNetv2 | 90.76 | 88.12 | 73.82 | 0.447 | 0.571 | + + + +## Pretrained-Models + +| Name | Easy | Medium | Hard | FLOPs(G) | Params(M) | Link | +| ----------- | ----- | ------ | ----- | -------- | --------- | ------------------------------------------------------------ | +| yolov5n-0.5 | 90.76 | 88.12 | 73.82 | 0.571 | 0.447 | Link: https://pan.baidu.com/s/1UgiKwzFq5NXI2y-Zui1kiA pwd: s5ow, https://drive.google.com/file/d/1XJ8w55Y9Po7Y5WP4X1Kg1a77ok2tL_KY/view?usp=sharing | +| yolov5n | 93.61 | 91.52 | 80.53 | 2.111 | 1.726 | Link: https://pan.baidu.com/s/1xsYns6cyB84aPDgXB7sNDQ pwd: lw9j,https://drive.google.com/file/d/18oenL6tjFkdR1f5IgpYeQfDFqU4w3jEr/view?usp=sharing | +| yolov5s | 94.33 | 92.61 | 83.15 | 5.751 | 7.075 | Link: https://pan.baidu.com/s/1fyzLxZYx7Ja1_PCIWRhxbw Link: eq0q,https://drive.google.com/file/d/1zxaHeLDyID9YU4-hqK7KNepXIwbTkRIO/view?usp=sharing | +| yolov5m | 95.30 | 93.76 | 85.28 | 18.146 | 21.063 | Link: https://pan.baidu.com/s/1oePvd2K6R4-gT0g7EERmdQ pwd: jmtk, https://drive.google.com/file/d/1Sx-KEGXSxvPMS35JhzQKeRBiqC98VDDI | +| yolov5l | 95.78 | 94.30 | 86.13 | 41.607 | 46.627 | Link: https://pan.baidu.com/s/11l4qSEgA2-c7e8lpRt8iFw pwd: 0mq7, https://drive.google.com/file/d/16F-3AjdQBn9p3nMhStUxfDNAE_1bOF_r | + +## Data preparation + +1. Download WIDERFace datasets. +2. Download annotation files from [google drive](https://drive.google.com/file/d/1tU_IjyOwGQfGNUvZGwWWM4SwxKp2PUQ8/view?usp=sharing). + +```shell +python3 train2yolo.py +python3 val2yolo.py +``` + + + +## Training + +```shell +CUDA_VISIBLE_DEVICES="0,1,2,3" python3 train.py --data data/widerface.yaml --cfg models/yolov5s.yaml --weights 'pretrained models' +``` + + + +## WIDERFace Evaluation + +```shell +python3 test_widerface.py --weights 'your test model' --img-size 640 + +cd widerface_evaluate +python3 evaluation.py +``` + +#### Test + +![](data/images/result.jpg) + + +#### Android demo + +https://github.com/FeiGeChuanShu/ncnn_Android_face/tree/main/ncnn-android-yolov5_face + +#### opencv dnn demo + +https://github.com/hpc203/yolov5-face-landmarks-opencv-v2 + +#### References + +https://github.com/ultralytics/yolov5 + +https://github.com/DayBreak-u/yolo-face-with-landmark + +https://github.com/xialuxi/yolov5_face_landmark + +https://github.com/biubug6/Pytorch_Retinaface + +https://github.com/deepinsight/insightface + + +#### Citation +- If you think this work is useful for you, please cite + + @article{YOLO5Face, + title = {YOLO5Face: Why Reinventing a Face Detector}, + author = {Delong Qi and Weijun Tan and Qi Yao and Jingfeng Liu}, + booktitle = {ArXiv preprint ArXiv:2105.12931}, + year = {2021} + } + +#### Main Contributors +https://github.com/derronqi + +https://github.com/changhy666 + +https://github.com/bobo0810 + diff --git a/lib/yolov5-face_Jan1/README_DISPENSION.md b/lib/yolov5-face_Jan1/README_DISPENSION.md new file mode 100755 index 000000000..154586172 --- /dev/null +++ b/lib/yolov5-face_Jan1/README_DISPENSION.md @@ -0,0 +1,40 @@ +## DISPENSION +## INTOXIVISION PROJECT - YOLOV5-FACE +## JANUARY 1, 2022 +## Lucas Wan (lucas.wan@dal.ca) + +**TO RUN** + +Ensure that all required packages are installed (see requirements.txt) + +python3 detect_face.py --image "/image-location" + +Can edit detect_face to update write location. + +**INFO** + +Uses pretrained model: yolov5m6_face. This model has the best recorded accuracy. + +Landmarks output gives X Y coordinates of [Left Eye, Right Eye, Nose, Left Mouth, Right Mouth, Left Inner Eyebrow, Right Inner Eyebrow]. + +X = 0 is left of image (right = positive), Y = 0 is top of image (down = positive). X and Y range from [0 , 1]. + +Location of eyebrows are calculated from eye locations based on average distances between pupils (63mm) and between pupil to top of eyebrow (25mm). + +Note that is folder only include files that are required for running the pretrained model (can not train a new model). + +**REFERENCES** + +https://github.com/ultralytics/yolov5 + +https://github.com/deepcam-cn/yolov5-face + +https://www.techrxiv.org/articles/preprint/TFW_Annotated_Thermal_Faces_in_the_Wild_Dataset/17004538 + +**TO DO** + +Combine landmark location information from multiple images (obtain average from burst of frames). + +Identify central person (currently only outputting landmarks for 1 person - could be person off to the side). + +Determine which packages in requirements.txt can be omitted. diff --git a/lib/yolov5-face_Jan1/data/images/100.png b/lib/yolov5-face_Jan1/data/images/100.png new file mode 100644 index 000000000..a3831ec0a Binary files /dev/null and b/lib/yolov5-face_Jan1/data/images/100.png differ diff --git a/lib/yolov5-face_Jan1/data/images/thermal1.png b/lib/yolov5-face_Jan1/data/images/thermal1.png new file mode 100644 index 000000000..f78225bf5 Binary files /dev/null and b/lib/yolov5-face_Jan1/data/images/thermal1.png differ diff --git a/lib/yolov5-face_Jan1/models/__init__.py b/lib/yolov5-face_Jan1/models/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/lib/yolov5-face_Jan1/models/__pycache__/__init__.cpython-310.pyc b/lib/yolov5-face_Jan1/models/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 000000000..03779e8ae Binary files /dev/null and b/lib/yolov5-face_Jan1/models/__pycache__/__init__.cpython-310.pyc differ diff --git a/lib/yolov5-face_Jan1/models/__pycache__/__init__.cpython-36.pyc b/lib/yolov5-face_Jan1/models/__pycache__/__init__.cpython-36.pyc new file mode 100644 index 000000000..b52e26006 Binary files /dev/null and b/lib/yolov5-face_Jan1/models/__pycache__/__init__.cpython-36.pyc differ diff --git a/lib/yolov5-face_Jan1/models/__pycache__/common.cpython-310.pyc b/lib/yolov5-face_Jan1/models/__pycache__/common.cpython-310.pyc new file mode 100644 index 000000000..1c80b302a Binary files /dev/null and b/lib/yolov5-face_Jan1/models/__pycache__/common.cpython-310.pyc differ diff --git a/lib/yolov5-face_Jan1/models/__pycache__/common.cpython-36.pyc b/lib/yolov5-face_Jan1/models/__pycache__/common.cpython-36.pyc new file mode 100644 index 000000000..29481346b Binary files /dev/null and b/lib/yolov5-face_Jan1/models/__pycache__/common.cpython-36.pyc differ diff --git a/lib/yolov5-face_Jan1/models/__pycache__/experimental.cpython-310.pyc b/lib/yolov5-face_Jan1/models/__pycache__/experimental.cpython-310.pyc new file mode 100644 index 000000000..a904a954a Binary files /dev/null and b/lib/yolov5-face_Jan1/models/__pycache__/experimental.cpython-310.pyc differ diff --git a/lib/yolov5-face_Jan1/models/__pycache__/experimental.cpython-36.pyc b/lib/yolov5-face_Jan1/models/__pycache__/experimental.cpython-36.pyc new file mode 100644 index 000000000..eb057ccdb Binary files /dev/null and b/lib/yolov5-face_Jan1/models/__pycache__/experimental.cpython-36.pyc differ diff --git a/lib/yolov5-face_Jan1/models/__pycache__/yolo.cpython-310.pyc b/lib/yolov5-face_Jan1/models/__pycache__/yolo.cpython-310.pyc new file mode 100644 index 000000000..f3b927de2 Binary files /dev/null and b/lib/yolov5-face_Jan1/models/__pycache__/yolo.cpython-310.pyc differ diff --git a/lib/yolov5-face_Jan1/models/__pycache__/yolo.cpython-36.pyc b/lib/yolov5-face_Jan1/models/__pycache__/yolo.cpython-36.pyc new file mode 100644 index 000000000..99c4d9418 Binary files /dev/null and b/lib/yolov5-face_Jan1/models/__pycache__/yolo.cpython-36.pyc differ diff --git a/lib/yolov5-face_Jan1/models/common.py b/lib/yolov5-face_Jan1/models/common.py new file mode 100644 index 000000000..40a19fa43 --- /dev/null +++ b/lib/yolov5-face_Jan1/models/common.py @@ -0,0 +1,439 @@ +# This file contains modules common to various models + +import math + +import numpy as np +import requests +import torch +import torch.nn as nn +from PIL import Image, ImageDraw + +from utils.datasets import letterbox +from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh +from utils.plots import color_list + +def autopad(k, p=None): # kernel, padding + # Pad to 'same' + if p is None: + p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad + return p + +def channel_shuffle(x, groups): + batchsize, num_channels, height, width = x.data.size() + channels_per_group = num_channels // groups + + # reshape + x = x.view(batchsize, groups, channels_per_group, height, width) + x = torch.transpose(x, 1, 2).contiguous() + + # flatten + x = x.view(batchsize, -1, height, width) + return x + +def DWConv(c1, c2, k=1, s=1, act=True): + # Depthwise convolution + return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act) + +class Conv(nn.Module): + # Standard convolution + def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups + super(Conv, self).__init__() + self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) + self.bn = nn.BatchNorm2d(c2) + self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) + #self.act = self.act = nn.LeakyReLU(0.1, inplace=True) if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) + + def forward(self, x): + return self.act(self.bn(self.conv(x))) + + def fuseforward(self, x): + return self.act(self.conv(x)) + +class StemBlock(nn.Module): + def __init__(self, c1, c2, k=3, s=2, p=None, g=1, act=True): + super(StemBlock, self).__init__() + self.stem_1 = Conv(c1, c2, k, s, p, g, act) + self.stem_2a = Conv(c2, c2 // 2, 1, 1, 0) + self.stem_2b = Conv(c2 // 2, c2, 3, 2, 1) + self.stem_2p = nn.MaxPool2d(kernel_size=2,stride=2,ceil_mode=True) + self.stem_3 = Conv(c2 * 2, c2, 1, 1, 0) + + def forward(self, x): + stem_1_out = self.stem_1(x) + stem_2a_out = self.stem_2a(stem_1_out) + stem_2b_out = self.stem_2b(stem_2a_out) + stem_2p_out = self.stem_2p(stem_1_out) + out = self.stem_3(torch.cat((stem_2b_out,stem_2p_out),1)) + return out + +class Bottleneck(nn.Module): + # Standard bottleneck + def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion + super(Bottleneck, self).__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = Conv(c_, c2, 3, 1, g=g) + self.add = shortcut and c1 == c2 + + def forward(self, x): + return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) + +class BottleneckCSP(nn.Module): + # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion + super(BottleneckCSP, self).__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) + self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) + self.cv4 = Conv(2 * c_, c2, 1, 1) + self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) + self.act = nn.LeakyReLU(0.1, inplace=True) + self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) + + def forward(self, x): + y1 = self.cv3(self.m(self.cv1(x))) + y2 = self.cv2(x) + return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) + + +class C3(nn.Module): + # CSP Bottleneck with 3 convolutions + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion + super(C3, self).__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = Conv(c1, c_, 1, 1) + self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2) + self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) + + def forward(self, x): + return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) + +class ShuffleV2Block(nn.Module): + def __init__(self, inp, oup, stride): + super(ShuffleV2Block, self).__init__() + + if not (1 <= stride <= 3): + raise ValueError('illegal stride value') + self.stride = stride + + branch_features = oup // 2 + assert (self.stride != 1) or (inp == branch_features << 1) + + if self.stride > 1: + self.branch1 = nn.Sequential( + self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1), + nn.BatchNorm2d(inp), + nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False), + nn.BatchNorm2d(branch_features), + nn.SiLU(), + ) + else: + self.branch1 = nn.Sequential() + + self.branch2 = nn.Sequential( + nn.Conv2d(inp if (self.stride > 1) else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), + nn.BatchNorm2d(branch_features), + nn.SiLU(), + self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1), + nn.BatchNorm2d(branch_features), + nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), + nn.BatchNorm2d(branch_features), + nn.SiLU(), + ) + + @staticmethod + def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False): + return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i) + + def forward(self, x): + if self.stride == 1: + x1, x2 = x.chunk(2, dim=1) + out = torch.cat((x1, self.branch2(x2)), dim=1) + else: + out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) + out = channel_shuffle(out, 2) + return out + +class BlazeBlock(nn.Module): + def __init__(self, in_channels,out_channels,mid_channels=None,stride=1): + super(BlazeBlock, self).__init__() + mid_channels = mid_channels or in_channels + assert stride in [1, 2] + if stride>1: + self.use_pool = True + else: + self.use_pool = False + + self.branch1 = nn.Sequential( + nn.Conv2d(in_channels=in_channels,out_channels=mid_channels,kernel_size=5,stride=stride,padding=2,groups=in_channels), + nn.BatchNorm2d(mid_channels), + nn.Conv2d(in_channels=mid_channels,out_channels=out_channels,kernel_size=1,stride=1), + nn.BatchNorm2d(out_channels), + ) + + if self.use_pool: + self.shortcut = nn.Sequential( + nn.MaxPool2d(kernel_size=stride, stride=stride), + nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1), + nn.BatchNorm2d(out_channels), + ) + + self.relu = nn.SiLU(inplace=True) + + def forward(self, x): + branch1 = self.branch1(x) + out = (branch1+self.shortcut(x)) if self.use_pool else (branch1+x) + return self.relu(out) + +class DoubleBlazeBlock(nn.Module): + def __init__(self,in_channels,out_channels,mid_channels=None,stride=1): + super(DoubleBlazeBlock, self).__init__() + mid_channels = mid_channels or in_channels + assert stride in [1, 2] + if stride > 1: + self.use_pool = True + else: + self.use_pool = False + + self.branch1 = nn.Sequential( + nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=5, stride=stride,padding=2,groups=in_channels), + nn.BatchNorm2d(in_channels), + nn.Conv2d(in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1), + nn.BatchNorm2d(mid_channels), + nn.SiLU(inplace=True), + nn.Conv2d(in_channels=mid_channels, out_channels=mid_channels, kernel_size=5, stride=1,padding=2), + nn.BatchNorm2d(mid_channels), + nn.Conv2d(in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1), + nn.BatchNorm2d(out_channels), + ) + + if self.use_pool: + self.shortcut = nn.Sequential( + nn.MaxPool2d(kernel_size=stride, stride=stride), + nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1), + nn.BatchNorm2d(out_channels), + ) + + self.relu = nn.SiLU(inplace=True) + + def forward(self, x): + branch1 = self.branch1(x) + out = (branch1 + self.shortcut(x)) if self.use_pool else (branch1 + x) + return self.relu(out) + + +class SPP(nn.Module): + # Spatial pyramid pooling layer used in YOLOv3-SPP + def __init__(self, c1, c2, k=(5, 9, 13)): + super(SPP, self).__init__() + c_ = c1 // 2 # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) + self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) + + def forward(self, x): + x = self.cv1(x) + return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) + + +class Focus(nn.Module): + # Focus wh information into c-space + def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups + super(Focus, self).__init__() + self.conv = Conv(c1 * 4, c2, k, s, p, g, act) + # self.contract = Contract(gain=2) + + def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) + return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) + # return self.conv(self.contract(x)) + + +class Contract(nn.Module): + # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40) + def __init__(self, gain=2): + super().__init__() + self.gain = gain + + def forward(self, x): + N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain' + s = self.gain + x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2) + x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40) + return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40) + + +class Expand(nn.Module): + # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160) + def __init__(self, gain=2): + super().__init__() + self.gain = gain + + def forward(self, x): + N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain' + s = self.gain + x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80) + x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2) + return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160) + + +class Concat(nn.Module): + # Concatenate a list of tensors along dimension + def __init__(self, dimension=1): + super(Concat, self).__init__() + self.d = dimension + + def forward(self, x): + return torch.cat(x, self.d) + + +class NMS(nn.Module): + # Non-Maximum Suppression (NMS) module + conf = 0.25 # confidence threshold + iou = 0.45 # IoU threshold + classes = None # (optional list) filter by class + + def __init__(self): + super(NMS, self).__init__() + + def forward(self, x): + return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) + +class autoShape(nn.Module): + # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS + img_size = 640 # inference size (pixels) + conf = 0.25 # NMS confidence threshold + iou = 0.45 # NMS IoU threshold + classes = None # (optional list) filter by class + + def __init__(self, model): + super(autoShape, self).__init__() + self.model = model.eval() + + def autoshape(self): + print('autoShape already enabled, skipping... ') # model already converted to model.autoshape() + return self + + def forward(self, imgs, size=640, augment=False, profile=False): + # Inference from various sources. For height=720, width=1280, RGB images example inputs are: + # filename: imgs = 'data/samples/zidane.jpg' + # URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg' + # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3) + # PIL: = Image.open('image.jpg') # HWC x(720,1280,3) + # numpy: = np.zeros((720,1280,3)) # HWC + # torch: = torch.zeros(16,3,720,1280) # BCHW + # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images + + p = next(self.model.parameters()) # for device and type + if isinstance(imgs, torch.Tensor): # torch + return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference + + # Pre-process + n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images + shape0, shape1 = [], [] # image and inference shapes + for i, im in enumerate(imgs): + if isinstance(im, str): # filename or uri + im = Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im) # open + im = np.array(im) # to numpy + if im.shape[0] < 5: # image in CHW + im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1) + im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input + s = im.shape[:2] # HWC + shape0.append(s) # image shape + g = (size / max(s)) # gain + shape1.append([y * g for y in s]) + imgs[i] = im # update + shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape + x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad + x = np.stack(x, 0) if n > 1 else x[0][None] # stack + x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW + x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32 + + # Inference + with torch.no_grad(): + y = self.model(x, augment, profile)[0] # forward + y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS + + # Post-process + for i in range(n): + scale_coords(shape1, y[i][:, :4], shape0[i]) + + return Detections(imgs, y, self.names) + + +class Detections: + # detections class for YOLOv5 inference results + def __init__(self, imgs, pred, names=None): + super(Detections, self).__init__() + d = pred[0].device # device + gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations + self.imgs = imgs # list of images as numpy arrays + self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) + self.names = names # class names + self.xyxy = pred # xyxy pixels + self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels + self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized + self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized + self.n = len(self.pred) + + def display(self, pprint=False, show=False, save=False, render=False): + colors = color_list() + for i, (img, pred) in enumerate(zip(self.imgs, self.pred)): + str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} ' + if pred is not None: + for c in pred[:, -1].unique(): + n = (pred[:, -1] == c).sum() # detections per class + str += f'{n} {self.names[int(c)]}s, ' # add to string + if show or save or render: + img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np + for *box, conf, cls in pred: # xyxy, confidence, class + # str += '%s %.2f, ' % (names[int(cls)], conf) # label + ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) # plot + if pprint: + print(str) + if show: + img.show(f'Image {i}') # show + if save: + f = f'results{i}.jpg' + str += f"saved to '{f}'" + img.save(f) # save + if render: + self.imgs[i] = np.asarray(img) + + def print(self): + self.display(pprint=True) # print results + + def show(self): + self.display(show=True) # show results + + def save(self): + self.display(save=True) # save results + + def render(self): + self.display(render=True) # render results + return self.imgs + + def __len__(self): + return self.n + + def tolist(self): + # return a list of Detections objects, i.e. 'for result in results.tolist():' + x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)] + for d in x: + for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']: + setattr(d, k, getattr(d, k)[0]) # pop out of list + return x + + +class Classify(nn.Module): + # Classification head, i.e. x(b,c1,20,20) to x(b,c2) + def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups + super(Classify, self).__init__() + self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1) + self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1) + self.flat = nn.Flatten() + + def forward(self, x): + z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list + return self.flat(self.conv(z)) # flatten to x(b,c2) diff --git a/lib/yolov5-face_Jan1/models/experimental.py b/lib/yolov5-face_Jan1/models/experimental.py new file mode 100644 index 000000000..72dc877c8 --- /dev/null +++ b/lib/yolov5-face_Jan1/models/experimental.py @@ -0,0 +1,133 @@ +# This file contains experimental modules + +import numpy as np +import torch +import torch.nn as nn + +from models.common import Conv, DWConv +from utils.google_utils import attempt_download + + +class CrossConv(nn.Module): + # Cross Convolution Downsample + def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False): + # ch_in, ch_out, kernel, stride, groups, expansion, shortcut + super(CrossConv, self).__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, c_, (1, k), (1, s)) + self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g) + self.add = shortcut and c1 == c2 + + def forward(self, x): + return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) + + +class Sum(nn.Module): + # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 + def __init__(self, n, weight=False): # n: number of inputs + super(Sum, self).__init__() + self.weight = weight # apply weights boolean + self.iter = range(n - 1) # iter object + if weight: + self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights + + def forward(self, x): + y = x[0] # no weight + if self.weight: + w = torch.sigmoid(self.w) * 2 + for i in self.iter: + y = y + x[i + 1] * w[i] + else: + for i in self.iter: + y = y + x[i + 1] + return y + + +class GhostConv(nn.Module): + # Ghost Convolution https://github.com/huawei-noah/ghostnet + def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups + super(GhostConv, self).__init__() + c_ = c2 // 2 # hidden channels + self.cv1 = Conv(c1, c_, k, s, None, g, act) + self.cv2 = Conv(c_, c_, 5, 1, None, c_, act) + + def forward(self, x): + y = self.cv1(x) + return torch.cat([y, self.cv2(y)], 1) + + +class GhostBottleneck(nn.Module): + # Ghost Bottleneck https://github.com/huawei-noah/ghostnet + def __init__(self, c1, c2, k, s): + super(GhostBottleneck, self).__init__() + c_ = c2 // 2 + self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw + DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw + GhostConv(c_, c2, 1, 1, act=False)) # pw-linear + self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), + Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity() + + def forward(self, x): + return self.conv(x) + self.shortcut(x) + + +class MixConv2d(nn.Module): + # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595 + def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): + super(MixConv2d, self).__init__() + groups = len(k) + if equal_ch: # equal c_ per group + i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices + c_ = [(i == g).sum() for g in range(groups)] # intermediate channels + else: # equal weight.numel() per group + b = [c2] + [0] * groups + a = np.eye(groups + 1, groups, k=-1) + a -= np.roll(a, 1, axis=1) + a *= np.array(k) ** 2 + a[0] = 1 + c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b + + self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)]) + self.bn = nn.BatchNorm2d(c2) + self.act = nn.LeakyReLU(0.1, inplace=True) + + def forward(self, x): + return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) + + +class Ensemble(nn.ModuleList): + # Ensemble of models + def __init__(self): + super(Ensemble, self).__init__() + + def forward(self, x, augment=False): + y = [] + for module in self: + y.append(module(x, augment)[0]) + # y = torch.stack(y).max(0)[0] # max ensemble + # y = torch.stack(y).mean(0) # mean ensemble + y = torch.cat(y, 1) # nms ensemble + return y, None # inference, train output + + +def attempt_load(weights, map_location=None): + # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a + model = Ensemble() + for w in weights if isinstance(weights, list) else [weights]: + attempt_download(w) + model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model + + # Compatibility updates + for m in model.modules(): + if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: + m.inplace = True # pytorch 1.7.0 compatibility + elif type(m) is Conv: + m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility + + if len(model) == 1: + return model[-1] # return model + else: + print('Ensemble created with %s\n' % weights) + for k in ['names', 'stride']: + setattr(model, k, getattr(model[-1], k)) + return model # return ensemble diff --git a/lib/yolov5-face_Jan1/models/export.py b/lib/yolov5-face_Jan1/models/export.py new file mode 100644 index 000000000..5de04cc56 --- /dev/null +++ b/lib/yolov5-face_Jan1/models/export.py @@ -0,0 +1,112 @@ +"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats + +Usage: + $ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1 +""" + +import argparse +import sys +import time + +sys.path.append('./') # to run '$ python *.py' files in subdirectories + +import torch +import torch.nn as nn + +import models +from models.experimental import attempt_load +from utils.activations import Hardswish, SiLU +from utils.general import set_logging, check_img_size +import onnx + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/ + parser.add_argument('--img_size', nargs='+', type=int, default=[640, 640], help='image size') # height, width + parser.add_argument('--batch_size', type=int, default=1, help='batch size') + parser.add_argument('--onnx2pb', action='store_true', default=False, help='export onnx to pb') + opt = parser.parse_args() + opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand + print(opt) + set_logging() + t = time.time() + + # Load PyTorch model + model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model + model.eval() + labels = model.names + + # Checks + gs = int(max(model.stride)) # grid size (max stride) + opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples + + # Input + img = torch.zeros(opt.batch_size, 3, *opt.img_size) # image size(1,3,320,192) iDetection + + # Update model + for k, m in model.named_modules(): + m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility + if isinstance(m, models.common.Conv): # assign export-friendly activations + if isinstance(m.act, nn.Hardswish): + m.act = Hardswish() + elif isinstance(m.act, nn.SiLU): + m.act = SiLU() + # elif isinstance(m, models.yolo.Detect): + # m.forward = m.forward_export # assign forward (optional) + if isinstance(m, models.common.ShuffleV2Block):#shufflenet block nn.SiLU + for i in range(len(m.branch1)): + if isinstance(m.branch1[i], nn.SiLU): + m.branch1[i] = SiLU() + for i in range(len(m.branch2)): + if isinstance(m.branch2[i], nn.SiLU): + m.branch2[i] = SiLU() + model.model[-1].export = True # set Detect() layer export=True + y = model(img) # dry run + + # ONNX export + print('\nStarting ONNX export with onnx %s...' % onnx.__version__) + f = opt.weights.replace('.pt', '.onnx') # filename + model.fuse() # only for ONNX + input_names=['data'] + output_names=['stride_' + str(int(x)) for x in model.stride] + torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=input_names, + output_names=output_names) + + # Checks + onnx_model = onnx.load(f) # load onnx model + onnx.checker.check_model(onnx_model) # check onnx model + # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model + print('ONNX export success, saved as %s' % f) + # Finish + print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t)) + + # PB export + if opt.onnx2pb: + print('download the newest onnx_tf by https://github.com/onnx/onnx-tensorflow/tree/master/onnx_tf') + from onnx_tf.backend import prepare + import tensorflow as tf + + outpb = f.replace('.onnx', '.pb') # filename + # strict=True maybe leads to KeyError: 'pyfunc_0', check: https://github.com/onnx/onnx-tensorflow/issues/167 + tf_rep = prepare(onnx_model, strict=False) # prepare tf representation + tf_rep.export_graph(outpb) # export the model + + out_onnx = tf_rep.run(img) # onnx output + + # check pb + with tf.Graph().as_default(): + graph_def = tf.GraphDef() + with open(outpb, "rb") as f: + graph_def.ParseFromString(f.read()) + tf.import_graph_def(graph_def, name="") + with tf.Session() as sess: + init = tf.global_variables_initializer() + input_x = sess.graph.get_tensor_by_name(input_names[0]+':0') # input + outputs = [] + for i in output_names: + outputs.append(sess.graph.get_tensor_by_name(i+':0')) + out_pb = sess.run(outputs, feed_dict={input_x: img}) + + print(f'out_pytorch {y}') + print(f'out_onnx {out_onnx}') + print(f'out_pb {out_pb}') diff --git a/lib/yolov5-face_Jan1/models/yolo.py b/lib/yolov5-face_Jan1/models/yolo.py new file mode 100644 index 000000000..11b4efed4 --- /dev/null +++ b/lib/yolov5-face_Jan1/models/yolo.py @@ -0,0 +1,343 @@ +import argparse +import logging +import math +import sys +from copy import deepcopy +from pathlib import Path + +import torch +import torch.nn as nn + +sys.path.append('./') # to run '$ python *.py' files in subdirectories +logger = logging.getLogger(__name__) + +from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, C3, ShuffleV2Block, Concat, NMS, autoShape, StemBlock, BlazeBlock, DoubleBlazeBlock +from models.experimental import MixConv2d, CrossConv +from utils.autoanchor import check_anchor_order +from utils.general import make_divisible, check_file, set_logging +from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \ + select_device, copy_attr + +try: + import thop # for FLOPS computation +except ImportError: + thop = None + + +class Detect(nn.Module): + stride = None # strides computed during build + export = False # onnx export + export_cat = False # onnx export cat output + + def __init__(self, nc=80, anchors=(), ch=()): # detection layer + super(Detect, self).__init__() + self.nc = nc # number of classes + #self.no = nc + 5 # number of outputs per anchor + self.no = nc + 5 + 10 # number of outputs per anchor + + self.nl = len(anchors) # number of detection layers + self.na = len(anchors[0]) // 2 # number of anchors + self.grid = [torch.zeros(1)] * self.nl # init grid + a = torch.tensor(anchors).float().view(self.nl, -1, 2) + self.register_buffer('anchors', a) # shape(nl,na,2) + self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) + self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv + + def forward(self, x): + # x = x.copy() # for profiling + z = [] # inference output + # self.training |= self.export + if self.export: + for i in range(self.nl): + x[i] = self.m[i](x[i]) + bs, _, ny, nx = x[i].shape # x(bs,48,20,20) to x(bs,3,20,20,16) + x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() + + return x + if self.export_cat: + for i in range(self.nl): + x[i] = self.m[i](x[i]) # conv + bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) + x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() + + if self.grid[i].shape[2:4] != x[i].shape[2:4]: + self.grid[i] = self._make_grid(nx, ny).to(x[i].device) + + y = torch.full_like(x[i], 0) + y = y + torch.cat((x[i][:, :, :, :, 0:5].sigmoid(), torch.cat((x[i][:, :, :, :, 5:15], x[i][:, :, :, :, 15:15+self.nc].sigmoid()), 4)), 4) + + box_xy = (y[:, :, :, :, 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy + box_wh = (y[:, :, :, :, 2:4] * 2) ** 2 * self.anchor_grid[i] # wh + # box_conf = torch.cat((box_xy, torch.cat((box_wh, y[:, :, :, :, 4:5]), 4)), 4) + + landm1 = y[:, :, :, :, 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x1 y1 + landm2 = y[:, :, :, :, 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x2 y2 + landm3 = y[:, :, :, :, 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x3 y3 + landm4 = y[:, :, :, :, 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x4 y4 + landm5 = y[:, :, :, :, 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x5 y5 + # landm = torch.cat((landm1, torch.cat((landm2, torch.cat((landm3, torch.cat((landm4, landm5), 4)), 4)), 4)), 4) + # y = torch.cat((box_conf, torch.cat((landm, y[:, :, :, :, 15:15+self.nc]), 4)), 4) + y = torch.cat([box_xy, box_wh, y[:, :, :, :, 4:5], landm1, landm2, landm3, landm4, landm5, y[:, :, :, :, 15:15+self.nc]], -1) + + z.append(y.view(bs, -1, self.no)) + return torch.cat(z, 1) + + for i in range(self.nl): + x[i] = self.m[i](x[i]) # conv + bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) + x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() + + if not self.training: # inference + if self.grid[i].shape[2:4] != x[i].shape[2:4]: + self.grid[i] = self._make_grid(nx, ny).to(x[i].device) + + y = torch.full_like(x[i], 0) + class_range = list(range(5)) + list(range(15,15+self.nc)) + y[..., class_range] = x[i][..., class_range].sigmoid() + y[..., 5:15] = x[i][..., 5:15] + #y = x[i].sigmoid() + + y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy + y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh + + #y[..., 5:15] = y[..., 5:15] * 8 - 4 + y[..., 5:7] = y[..., 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x1 y1 + y[..., 7:9] = y[..., 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x2 y2 + y[..., 9:11] = y[..., 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x3 y3 + y[..., 11:13] = y[..., 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x4 y4 + y[..., 13:15] = y[..., 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x5 y5 + + #y[..., 5:7] = (y[..., 5:7] * 2 -1) * self.anchor_grid[i] # landmark x1 y1 + #y[..., 7:9] = (y[..., 7:9] * 2 -1) * self.anchor_grid[i] # landmark x2 y2 + #y[..., 9:11] = (y[..., 9:11] * 2 -1) * self.anchor_grid[i] # landmark x3 y3 + #y[..., 11:13] = (y[..., 11:13] * 2 -1) * self.anchor_grid[i] # landmark x4 y4 + #y[..., 13:15] = (y[..., 13:15] * 2 -1) * self.anchor_grid[i] # landmark x5 y5 + + z.append(y.view(bs, -1, self.no)) + + return x if self.training else (torch.cat(z, 1), x) + + @staticmethod + def _make_grid(nx=20, ny=20): + yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) + return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() + + +class Model(nn.Module): + def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes + super(Model, self).__init__() + if isinstance(cfg, dict): + self.yaml = cfg # model dict + else: # is *.yaml + import yaml # for torch hub + self.yaml_file = Path(cfg).name + with open(cfg) as f: + self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict + + # Define model + ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels + if nc and nc != self.yaml['nc']: + logger.info('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc)) + self.yaml['nc'] = nc # override yaml value + self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist + self.names = [str(i) for i in range(self.yaml['nc'])] # default names + # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) + + # Build strides, anchors + m = self.model[-1] # Detect() + if isinstance(m, Detect): + s = 128 # 2x min stride + m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward + m.anchors /= m.stride.view(-1, 1, 1) + check_anchor_order(m) + self.stride = m.stride + self._initialize_biases() # only run once + # print('Strides: %s' % m.stride.tolist()) + + # Init weights, biases + initialize_weights(self) + self.info() + logger.info('') + + def forward(self, x, augment=False, profile=False): + if augment: + img_size = x.shape[-2:] # height, width + s = [1, 0.83, 0.67] # scales + f = [None, 3, None] # flips (2-ud, 3-lr) + y = [] # outputs + for si, fi in zip(s, f): + xi = scale_img(x.flip(fi) if fi else x, si) + yi = self.forward_once(xi)[0] # forward + # cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save + yi[..., :4] /= si # de-scale + if fi == 2: + yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud + elif fi == 3: + yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr + y.append(yi) + return torch.cat(y, 1), None # augmented inference, train + else: + return self.forward_once(x, profile) # single-scale inference, train + + def forward_once(self, x, profile=False): + y, dt = [], [] # outputs + for m in self.model: + if m.f != -1: # if not from previous layer + x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers + + if profile: + o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS + t = time_synchronized() + for _ in range(10): + _ = m(x) + dt.append((time_synchronized() - t) * 100) + print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type)) + + x = m(x) # run + y.append(x if m.i in self.save else None) # save output + + if profile: + print('%.1fms total' % sum(dt)) + return x + + def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency + # https://arxiv.org/abs/1708.02002 section 3.3 + # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. + m = self.model[-1] # Detect() module + for mi, s in zip(m.m, m.stride): # from + b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) + b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) + b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls + mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) + + def _print_biases(self): + m = self.model[-1] # Detect() module + for mi in m.m: # from + b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) + print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) + + # def _print_weights(self): + # for m in self.model.modules(): + # if type(m) is Bottleneck: + # print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights + + def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers + print('Fusing layers... ') + for m in self.model.modules(): + if type(m) is Conv and hasattr(m, 'bn'): + m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv + delattr(m, 'bn') # remove batchnorm + m.forward = m.fuseforward # update forward + self.info() + return self + + def nms(self, mode=True): # add or remove NMS module + present = type(self.model[-1]) is NMS # last layer is NMS + if mode and not present: + print('Adding NMS... ') + m = NMS() # module + m.f = -1 # from + m.i = self.model[-1].i + 1 # index + self.model.add_module(name='%s' % m.i, module=m) # add + self.eval() + elif not mode and present: + print('Removing NMS... ') + self.model = self.model[:-1] # remove + return self + + def autoshape(self): # add autoShape module + print('Adding autoShape... ') + m = autoShape(self) # wrap model + copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes + return m + + def info(self, verbose=False, img_size=640): # print model information + model_info(self, verbose, img_size) + + +def parse_model(d, ch): # model_dict, input_channels(3) + logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) + anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] + na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors + no = na * (nc + 5) # number of outputs = anchors * (classes + 5) + + layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out + for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args + m = eval(m) if isinstance(m, str) else m # eval strings + for j, a in enumerate(args): + try: + args[j] = eval(a) if isinstance(a, str) else a # eval strings + except: + pass + + n = max(round(n * gd), 1) if n > 1 else n # depth gain + if m in [Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, ShuffleV2Block, StemBlock, BlazeBlock, DoubleBlazeBlock]: + c1, c2 = ch[f], args[0] + + # Normal + # if i > 0 and args[0] != no: # channel expansion factor + # ex = 1.75 # exponential (default 2.0) + # e = math.log(c2 / ch[1]) / math.log(2) + # c2 = int(ch[1] * ex ** e) + # if m != Focus: + + c2 = make_divisible(c2 * gw, 8) if c2 != no else c2 + + # Experimental + # if i > 0 and args[0] != no: # channel expansion factor + # ex = 1 + gw # exponential (default 2.0) + # ch1 = 32 # ch[1] + # e = math.log(c2 / ch1) / math.log(2) # level 1-n + # c2 = int(ch1 * ex ** e) + # if m != Focus: + # c2 = make_divisible(c2, 8) if c2 != no else c2 + + args = [c1, c2, *args[1:]] + if m in [BottleneckCSP, C3]: + args.insert(2, n) + n = 1 + elif m is nn.BatchNorm2d: + args = [ch[f]] + elif m is Concat: + c2 = sum([ch[-1 if x == -1 else x + 1] for x in f]) + elif m is Detect: + args.append([ch[x + 1] for x in f]) + if isinstance(args[1], int): # number of anchors + args[1] = [list(range(args[1] * 2))] * len(f) + else: + c2 = ch[f] + + m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module + t = str(m)[8:-2].replace('__main__.', '') # module type + np = sum([x.numel() for x in m_.parameters()]) # number params + m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params + logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print + save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist + layers.append(m_) + ch.append(c2) + return nn.Sequential(*layers), sorted(save) + + +from thop import profile +from thop import clever_format +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + opt = parser.parse_args() + opt.cfg = check_file(opt.cfg) # check file + set_logging() + device = select_device(opt.device) + + # Create model + model = Model(opt.cfg).to(device) + stride = model.stride.max() + if stride == 32: + input = torch.Tensor(1, 3, 480, 640).to(device) + else: + input = torch.Tensor(1, 3, 512, 640).to(device) + model.train() + print(model) + flops, params = profile(model, inputs=(input, )) + flops, params = clever_format([flops, params], "%.3f") + print('Flops:', flops, ',Params:' ,params) diff --git a/lib/yolov5-face_Jan1/requirements.txt b/lib/yolov5-face_Jan1/requirements.txt new file mode 100755 index 000000000..22b51fc49 --- /dev/null +++ b/lib/yolov5-face_Jan1/requirements.txt @@ -0,0 +1,36 @@ +# pip install -r requirements.txt + +# Base ---------------------------------------- +matplotlib>=3.2.2 +numpy>=1.18.5 +opencv-python>=4.1.2 +Pillow>=7.1.2 +PyYAML>=5.3.1 +requests>=2.23.0 +scipy>=1.4.1 +torch>=1.7.0 +torchvision>=0.8.1 +tqdm>=4.41.0 + +# Logging ------------------------------------- +tensorboard>=2.4.1 +# wandb + +# Plotting ------------------------------------ +pandas>=1.1.4 +seaborn>=0.11.0 + +# Export -------------------------------------- +# coremltools>=4.1 # CoreML export +# onnx>=1.9.0 # ONNX export +# onnx-simplifier>=0.3.6 # ONNX simplifier +# scikit-learn==0.19.2 # CoreML quantization +# tensorflow>=2.4.1 # TFLite export +# tensorflowjs>=3.9.0 # TF.js export + +# Extras -------------------------------------- +# albumentations>=1.0.3 +# Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172 +# pycocotools>=2.0 # COCO mAP +# roboflow +thop # FLOPs computation diff --git a/lib/yolov5-face_Jan1/runs/train/exp/events.out.tfevents.1639845652.lucasacm-Legion-5-15ITH6.3761.0 b/lib/yolov5-face_Jan1/runs/train/exp/events.out.tfevents.1639845652.lucasacm-Legion-5-15ITH6.3761.0 new file mode 100644 index 000000000..9b1415e30 Binary files /dev/null and b/lib/yolov5-face_Jan1/runs/train/exp/events.out.tfevents.1639845652.lucasacm-Legion-5-15ITH6.3761.0 differ diff --git a/lib/yolov5-face_Jan1/runs/train/exp/hyp.yaml b/lib/yolov5-face_Jan1/runs/train/exp/hyp.yaml new file mode 100644 index 000000000..cfe751135 --- /dev/null +++ b/lib/yolov5-face_Jan1/runs/train/exp/hyp.yaml @@ -0,0 +1,28 @@ +lr0: 0.01 +lrf: 0.2 +momentum: 0.937 +weight_decay: 0.0005 +warmup_epochs: 3.0 +warmup_momentum: 0.8 +warmup_bias_lr: 0.1 +box: 0.05 +cls: 0.5 +landmark: 0.005 +cls_pw: 1.0 +obj: 1.0 +obj_pw: 1.0 +iou_t: 0.2 +anchor_t: 4.0 +fl_gamma: 0.0 +hsv_h: 0.015 +hsv_s: 0.7 +hsv_v: 0.4 +degrees: 0.0 +translate: 0.1 +scale: 0.5 +shear: 0.5 +perspective: 0.0 +flipud: 0.0 +fliplr: 0.5 +mosaic: 0.5 +mixup: 0.0 diff --git a/lib/yolov5-face_Jan1/runs/train/exp/opt.yaml b/lib/yolov5-face_Jan1/runs/train/exp/opt.yaml new file mode 100644 index 000000000..8cac7da3d --- /dev/null +++ b/lib/yolov5-face_Jan1/runs/train/exp/opt.yaml @@ -0,0 +1,34 @@ +weights: pretrained models +cfg: models/yolov5s.yaml +data: data/widerface.yaml +hyp: data/hyp.scratch.yaml +epochs: 250 +batch_size: 16 +img_size: +- 800 +- 800 +rect: false +resume: false +nosave: false +notest: false +noautoanchor: false +evolve: false +bucket: '' +cache_images: false +image_weights: false +device: '' +multi_scale: false +single_cls: false +adam: false +sync_bn: false +local_rank: -1 +log_imgs: 16 +log_artifacts: false +workers: 4 +project: runs/train +name: exp +exist_ok: false +total_batch_size: 16 +world_size: 1 +global_rank: -1 +save_dir: runs/train/exp diff --git a/lib/yolov5-face_Jan1/runs/train/exp/weights/yolov5m6_face.pt b/lib/yolov5-face_Jan1/runs/train/exp/weights/yolov5m6_face.pt new file mode 100644 index 000000000..60c608962 Binary files /dev/null and b/lib/yolov5-face_Jan1/runs/train/exp/weights/yolov5m6_face.pt differ diff --git a/lib/yolov5-face_Jan1/utils/__init__.py b/lib/yolov5-face_Jan1/utils/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/lib/yolov5-face_Jan1/utils/__pycache__/__init__.cpython-310.pyc b/lib/yolov5-face_Jan1/utils/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 000000000..6a9e27da3 Binary files /dev/null and b/lib/yolov5-face_Jan1/utils/__pycache__/__init__.cpython-310.pyc differ diff --git a/lib/yolov5-face_Jan1/utils/__pycache__/__init__.cpython-36.pyc b/lib/yolov5-face_Jan1/utils/__pycache__/__init__.cpython-36.pyc new file mode 100644 index 000000000..bb1eddcb4 Binary files /dev/null and b/lib/yolov5-face_Jan1/utils/__pycache__/__init__.cpython-36.pyc differ diff --git a/lib/yolov5-face_Jan1/utils/__pycache__/autoanchor.cpython-310.pyc b/lib/yolov5-face_Jan1/utils/__pycache__/autoanchor.cpython-310.pyc new file mode 100644 index 000000000..cfb0a56ae Binary files /dev/null and b/lib/yolov5-face_Jan1/utils/__pycache__/autoanchor.cpython-310.pyc differ diff --git a/lib/yolov5-face_Jan1/utils/__pycache__/autoanchor.cpython-36.pyc b/lib/yolov5-face_Jan1/utils/__pycache__/autoanchor.cpython-36.pyc new file mode 100644 index 000000000..22a19ba13 Binary files /dev/null and b/lib/yolov5-face_Jan1/utils/__pycache__/autoanchor.cpython-36.pyc differ diff --git a/lib/yolov5-face_Jan1/utils/__pycache__/datasets.cpython-310.pyc b/lib/yolov5-face_Jan1/utils/__pycache__/datasets.cpython-310.pyc new file mode 100644 index 000000000..a64d5d318 Binary files /dev/null and b/lib/yolov5-face_Jan1/utils/__pycache__/datasets.cpython-310.pyc differ diff --git a/lib/yolov5-face_Jan1/utils/__pycache__/datasets.cpython-36.pyc b/lib/yolov5-face_Jan1/utils/__pycache__/datasets.cpython-36.pyc new file mode 100644 index 000000000..b2306ec83 Binary files /dev/null and b/lib/yolov5-face_Jan1/utils/__pycache__/datasets.cpython-36.pyc differ diff --git a/lib/yolov5-face_Jan1/utils/__pycache__/general.cpython-310.pyc b/lib/yolov5-face_Jan1/utils/__pycache__/general.cpython-310.pyc new file mode 100644 index 000000000..83bcb5678 Binary files /dev/null and b/lib/yolov5-face_Jan1/utils/__pycache__/general.cpython-310.pyc differ diff --git a/lib/yolov5-face_Jan1/utils/__pycache__/general.cpython-36.pyc b/lib/yolov5-face_Jan1/utils/__pycache__/general.cpython-36.pyc new file mode 100644 index 000000000..ccd67cff4 Binary files /dev/null and b/lib/yolov5-face_Jan1/utils/__pycache__/general.cpython-36.pyc differ diff --git a/lib/yolov5-face_Jan1/utils/__pycache__/google_utils.cpython-310.pyc b/lib/yolov5-face_Jan1/utils/__pycache__/google_utils.cpython-310.pyc new file mode 100644 index 000000000..323635c59 Binary files /dev/null and b/lib/yolov5-face_Jan1/utils/__pycache__/google_utils.cpython-310.pyc differ diff --git a/lib/yolov5-face_Jan1/utils/__pycache__/google_utils.cpython-36.pyc b/lib/yolov5-face_Jan1/utils/__pycache__/google_utils.cpython-36.pyc new file mode 100644 index 000000000..7a25abf46 Binary files /dev/null and b/lib/yolov5-face_Jan1/utils/__pycache__/google_utils.cpython-36.pyc differ diff --git a/lib/yolov5-face_Jan1/utils/__pycache__/metrics.cpython-310.pyc b/lib/yolov5-face_Jan1/utils/__pycache__/metrics.cpython-310.pyc new file mode 100644 index 000000000..247ddd76b Binary files /dev/null and b/lib/yolov5-face_Jan1/utils/__pycache__/metrics.cpython-310.pyc differ diff --git a/lib/yolov5-face_Jan1/utils/__pycache__/metrics.cpython-36.pyc b/lib/yolov5-face_Jan1/utils/__pycache__/metrics.cpython-36.pyc new file mode 100644 index 000000000..4067583c0 Binary files /dev/null and b/lib/yolov5-face_Jan1/utils/__pycache__/metrics.cpython-36.pyc differ diff --git a/lib/yolov5-face_Jan1/utils/__pycache__/plots.cpython-310.pyc b/lib/yolov5-face_Jan1/utils/__pycache__/plots.cpython-310.pyc new file mode 100644 index 000000000..ae91f4c4c Binary files /dev/null and b/lib/yolov5-face_Jan1/utils/__pycache__/plots.cpython-310.pyc differ diff --git a/lib/yolov5-face_Jan1/utils/__pycache__/plots.cpython-36.pyc b/lib/yolov5-face_Jan1/utils/__pycache__/plots.cpython-36.pyc new file mode 100644 index 000000000..273252779 Binary files /dev/null and b/lib/yolov5-face_Jan1/utils/__pycache__/plots.cpython-36.pyc differ diff --git a/lib/yolov5-face_Jan1/utils/__pycache__/torch_utils.cpython-310.pyc b/lib/yolov5-face_Jan1/utils/__pycache__/torch_utils.cpython-310.pyc new file mode 100644 index 000000000..8c58f0d84 Binary files /dev/null and b/lib/yolov5-face_Jan1/utils/__pycache__/torch_utils.cpython-310.pyc differ diff --git a/lib/yolov5-face_Jan1/utils/__pycache__/torch_utils.cpython-36.pyc b/lib/yolov5-face_Jan1/utils/__pycache__/torch_utils.cpython-36.pyc new file mode 100644 index 000000000..8f57f303d Binary files /dev/null and b/lib/yolov5-face_Jan1/utils/__pycache__/torch_utils.cpython-36.pyc differ diff --git a/lib/yolov5-face_Jan1/utils/activations.py b/lib/yolov5-face_Jan1/utils/activations.py new file mode 100644 index 000000000..aa3ddf071 --- /dev/null +++ b/lib/yolov5-face_Jan1/utils/activations.py @@ -0,0 +1,72 @@ +# Activation functions + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +# SiLU https://arxiv.org/pdf/1606.08415.pdf ---------------------------------------------------------------------------- +class SiLU(nn.Module): # export-friendly version of nn.SiLU() + @staticmethod + def forward(x): + return x * torch.sigmoid(x) + + +class Hardswish(nn.Module): # export-friendly version of nn.Hardswish() + @staticmethod + def forward(x): + # return x * F.hardsigmoid(x) # for torchscript and CoreML + return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX + + +class MemoryEfficientSwish(nn.Module): + class F(torch.autograd.Function): + @staticmethod + def forward(ctx, x): + ctx.save_for_backward(x) + return x * torch.sigmoid(x) + + @staticmethod + def backward(ctx, grad_output): + x = ctx.saved_tensors[0] + sx = torch.sigmoid(x) + return grad_output * (sx * (1 + x * (1 - sx))) + + def forward(self, x): + return self.F.apply(x) + + +# Mish https://github.com/digantamisra98/Mish -------------------------------------------------------------------------- +class Mish(nn.Module): + @staticmethod + def forward(x): + return x * F.softplus(x).tanh() + + +class MemoryEfficientMish(nn.Module): + class F(torch.autograd.Function): + @staticmethod + def forward(ctx, x): + ctx.save_for_backward(x) + return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x))) + + @staticmethod + def backward(ctx, grad_output): + x = ctx.saved_tensors[0] + sx = torch.sigmoid(x) + fx = F.softplus(x).tanh() + return grad_output * (fx + x * sx * (1 - fx * fx)) + + def forward(self, x): + return self.F.apply(x) + + +# FReLU https://arxiv.org/abs/2007.11824 ------------------------------------------------------------------------------- +class FReLU(nn.Module): + def __init__(self, c1, k=3): # ch_in, kernel + super().__init__() + self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False) + self.bn = nn.BatchNorm2d(c1) + + def forward(self, x): + return torch.max(x, self.bn(self.conv(x))) diff --git a/lib/yolov5-face_Jan1/utils/autoanchor.py b/lib/yolov5-face_Jan1/utils/autoanchor.py new file mode 100644 index 000000000..5dba9f1ea --- /dev/null +++ b/lib/yolov5-face_Jan1/utils/autoanchor.py @@ -0,0 +1,155 @@ +# Auto-anchor utils + +import numpy as np +import torch +import yaml +from scipy.cluster.vq import kmeans +from tqdm import tqdm + +from utils.general import colorstr + + +def check_anchor_order(m): + # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary + a = m.anchor_grid.prod(-1).view(-1) # anchor area + da = a[-1] - a[0] # delta a + ds = m.stride[-1] - m.stride[0] # delta s + if da.sign() != ds.sign(): # same order + print('Reversing anchor order') + m.anchors[:] = m.anchors.flip(0) + m.anchor_grid[:] = m.anchor_grid.flip(0) + + +def check_anchors(dataset, model, thr=4.0, imgsz=640): + # Check anchor fit to data, recompute if necessary + prefix = colorstr('autoanchor: ') + print(f'\n{prefix}Analyzing anchors... ', end='') + m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect() + shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) + scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale + wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh + + def metric(k): # compute metric + r = wh[:, None] / k[None] + x = torch.min(r, 1. / r).min(2)[0] # ratio metric + best = x.max(1)[0] # best_x + aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold + bpr = (best > 1. / thr).float().mean() # best possible recall + return bpr, aat + + bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2)) + print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='') + if bpr < 0.98: # threshold to recompute + print('. Attempting to improve anchors, please wait...') + na = m.anchor_grid.numel() // 2 # number of anchors + new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False) + new_bpr = metric(new_anchors.reshape(-1, 2))[0] + if new_bpr > bpr: # replace anchors + new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors) + m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference + m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss + check_anchor_order(m) + print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.') + else: + print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.') + print('') # newline + + +def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): + """ Creates kmeans-evolved anchors from training dataset + + Arguments: + path: path to dataset *.yaml, or a loaded dataset + n: number of anchors + img_size: image size used for training + thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 + gen: generations to evolve anchors using genetic algorithm + verbose: print all results + + Return: + k: kmeans evolved anchors + + Usage: + from utils.autoanchor import *; _ = kmean_anchors() + """ + thr = 1. / thr + prefix = colorstr('autoanchor: ') + + def metric(k, wh): # compute metrics + r = wh[:, None] / k[None] + x = torch.min(r, 1. / r).min(2)[0] # ratio metric + # x = wh_iou(wh, torch.tensor(k)) # iou metric + return x, x.max(1)[0] # x, best_x + + def anchor_fitness(k): # mutation fitness + _, best = metric(torch.tensor(k, dtype=torch.float32), wh) + return (best * (best > thr).float()).mean() # fitness + + def print_results(k): + k = k[np.argsort(k.prod(1))] # sort small to large + x, best = metric(k, wh0) + bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr + print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr') + print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' + f'past_thr={x[x > thr].mean():.3f}-mean: ', end='') + for i, x in enumerate(k): + print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg + return k + + if isinstance(path, str): # *.yaml file + with open(path) as f: + data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict + from utils.datasets import LoadImagesAndLabels + dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) + else: + dataset = path # dataset + + # Get label wh + shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) + wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh + + # Filter + i = (wh0 < 3.0).any(1).sum() + if i: + print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.') + wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels + # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1 + + # Kmeans calculation + print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...') + s = wh.std(0) # sigmas for whitening + k, dist = kmeans(wh / s, n, iter=30) # points, mean distance + k *= s + wh = torch.tensor(wh, dtype=torch.float32) # filtered + wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered + k = print_results(k) + + # Plot + # k, d = [None] * 20, [None] * 20 + # for i in tqdm(range(1, 21)): + # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance + # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True) + # ax = ax.ravel() + # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') + # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh + # ax[0].hist(wh[wh[:, 0]<100, 0],400) + # ax[1].hist(wh[wh[:, 1]<100, 1],400) + # fig.savefig('wh.png', dpi=200) + + # Evolve + npr = np.random + f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma + pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar + for _ in pbar: + v = np.ones(sh) + while (v == 1).all(): # mutate until a change occurs (prevent duplicates) + v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) + kg = (k.copy() * v).clip(min=2.0) + fg = anchor_fitness(kg) + if fg > f: + f, k = fg, kg.copy() + pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}' + if verbose: + print_results(k) + + return print_results(k) diff --git a/lib/yolov5-face_Jan1/utils/datasets.py b/lib/yolov5-face_Jan1/utils/datasets.py new file mode 100755 index 000000000..feb5dc1dc --- /dev/null +++ b/lib/yolov5-face_Jan1/utils/datasets.py @@ -0,0 +1,1019 @@ +# Dataset utils and dataloaders + +import glob +import logging +import math +import os +import random +import shutil +import time +from itertools import repeat +from multiprocessing.pool import ThreadPool +from pathlib import Path +from threading import Thread + +import cv2 +import numpy as np +import torch +import torch.nn.functional as F +from PIL import Image, ExifTags +from torch.utils.data import Dataset +from tqdm import tqdm + +from utils.general import xyxy2xywh, xywh2xyxy, xywhn2xyxy, clean_str +from utils.torch_utils import torch_distributed_zero_first + +# Parameters +help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' +img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes +vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes +logger = logging.getLogger(__name__) + +# Get orientation exif tag +for orientation in ExifTags.TAGS.keys(): + if ExifTags.TAGS[orientation] == 'Orientation': + break + + +def get_hash(files): + # Returns a single hash value of a list of files + return sum(os.path.getsize(f) for f in files if os.path.isfile(f)) + + +def exif_size(img): + # Returns exif-corrected PIL size + s = img.size # (width, height) + try: + rotation = dict(img._getexif().items())[orientation] + if rotation == 6: # rotation 270 + s = (s[1], s[0]) + elif rotation == 8: # rotation 90 + s = (s[1], s[0]) + except: + pass + + return s + + +def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False, + rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''): + # Make sure only the first process in DDP process the dataset first, and the following others can use the cache + with torch_distributed_zero_first(rank): + dataset = LoadImagesAndLabels(path, imgsz, batch_size, + augment=augment, # augment images + hyp=hyp, # augmentation hyperparameters + rect=rect, # rectangular training + cache_images=cache, + single_cls=opt.single_cls, + stride=int(stride), + pad=pad, + image_weights=image_weights, + prefix=prefix) + + batch_size = min(batch_size, len(dataset)) + nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers + sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None + loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader + # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader() + dataloader = loader(dataset, + batch_size=batch_size, + num_workers=nw, + sampler=sampler, + pin_memory=True, + collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn) + return dataloader, dataset + + +class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader): + """ Dataloader that reuses workers + + Uses same syntax as vanilla DataLoader + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) + self.iterator = super().__iter__() + + def __len__(self): + return len(self.batch_sampler.sampler) + + def __iter__(self): + for i in range(len(self)): + yield next(self.iterator) + + +class _RepeatSampler(object): + """ Sampler that repeats forever + + Args: + sampler (Sampler) + """ + + def __init__(self, sampler): + self.sampler = sampler + + def __iter__(self): + while True: + yield from iter(self.sampler) + + +class LoadImages: # for inference + def __init__(self, path, img_size=640): + p = str(Path(path)) # os-agnostic + p = os.path.abspath(p) # absolute path + if '*' in p: + files = sorted(glob.glob(p, recursive=True)) # glob + elif os.path.isdir(p): + files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir + elif os.path.isfile(p): + files = [p] # files + else: + raise Exception(f'ERROR: {p} does not exist') + + images = [x for x in files if x.split('.')[-1].lower() in img_formats] + videos = [x for x in files if x.split('.')[-1].lower() in vid_formats] + ni, nv = len(images), len(videos) + + self.img_size = img_size + self.files = images + videos + self.nf = ni + nv # number of files + self.video_flag = [False] * ni + [True] * nv + self.mode = 'image' + if any(videos): + self.new_video(videos[0]) # new video + else: + self.cap = None + assert self.nf > 0, f'No images or videos found in {p}. ' \ + f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}' + + def __iter__(self): + self.count = 0 + return self + + def __next__(self): + if self.count == self.nf: + raise StopIteration + path = self.files[self.count] + + if self.video_flag[self.count]: + # Read video + self.mode = 'video' + ret_val, img0 = self.cap.read() + if not ret_val: + self.count += 1 + self.cap.release() + if self.count == self.nf: # last video + raise StopIteration + else: + path = self.files[self.count] + self.new_video(path) + ret_val, img0 = self.cap.read() + + self.frame += 1 + print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='') + + else: + # Read image + self.count += 1 + img0 = cv2.imread(path) # BGR + assert img0 is not None, 'Image Not Found ' + path + print(f'image {self.count}/{self.nf} {path}: ', end='') + + # Padded resize + img = letterbox(img0, new_shape=self.img_size)[0] + + # Convert + img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 + img = np.ascontiguousarray(img) + + return path, img, img0, self.cap + + def new_video(self, path): + self.frame = 0 + self.cap = cv2.VideoCapture(path) + self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) + + def __len__(self): + return self.nf # number of files + + +class LoadWebcam: # for inference + def __init__(self, pipe='0', img_size=640): + self.img_size = img_size + + if pipe.isnumeric(): + pipe = eval(pipe) # local camera + # pipe = 'rtsp://192.168.1.64/1' # IP camera + # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login + # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera + + self.pipe = pipe + self.cap = cv2.VideoCapture(pipe) # video capture object + self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size + + def __iter__(self): + self.count = -1 + return self + + def __next__(self): + self.count += 1 + if cv2.waitKey(1) == ord('q'): # q to quit + self.cap.release() + cv2.destroyAllWindows() + raise StopIteration + + # Read frame + if self.pipe == 0: # local camera + ret_val, img0 = self.cap.read() + img0 = cv2.flip(img0, 1) # flip left-right + else: # IP camera + n = 0 + while True: + n += 1 + self.cap.grab() + if n % 30 == 0: # skip frames + ret_val, img0 = self.cap.retrieve() + if ret_val: + break + + # Print + assert ret_val, f'Camera Error {self.pipe}' + img_path = 'webcam.jpg' + print(f'webcam {self.count}: ', end='') + + # Padded resize + img = letterbox(img0, new_shape=self.img_size)[0] + + # Convert + img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 + img = np.ascontiguousarray(img) + + return img_path, img, img0, None + + def __len__(self): + return 0 + + +class LoadStreams: # multiple IP or RTSP cameras + def __init__(self, sources='streams.txt', img_size=640): + self.mode = 'stream' + self.img_size = img_size + + if os.path.isfile(sources): + with open(sources, 'r') as f: + sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())] + else: + sources = [sources] + + n = len(sources) + self.imgs = [None] * n + self.sources = [clean_str(x) for x in sources] # clean source names for later + for i, s in enumerate(sources): + # Start the thread to read frames from the video stream + print(f'{i + 1}/{n}: {s}... ', end='') + cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s) + assert cap.isOpened(), f'Failed to open {s}' + w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) + h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) + fps = cap.get(cv2.CAP_PROP_FPS) % 100 + _, self.imgs[i] = cap.read() # guarantee first frame + thread = Thread(target=self.update, args=([i, cap]), daemon=True) + print(f' success ({w}x{h} at {fps:.2f} FPS).') + thread.start() + print('') # newline + + # check for common shapes + s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes + self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal + if not self.rect: + print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.') + + def update(self, index, cap): + # Read next stream frame in a daemon thread + n = 0 + while cap.isOpened(): + n += 1 + # _, self.imgs[index] = cap.read() + cap.grab() + if n == 4: # read every 4th frame + _, self.imgs[index] = cap.retrieve() + n = 0 + time.sleep(0.01) # wait time + + def __iter__(self): + self.count = -1 + return self + + def __next__(self): + self.count += 1 + img0 = self.imgs.copy() + if cv2.waitKey(1) == ord('q'): # q to quit + cv2.destroyAllWindows() + raise StopIteration + + # Letterbox + img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0] + + # Stack + img = np.stack(img, 0) + + # Convert + img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416 + img = np.ascontiguousarray(img) + + return self.sources, img, img0, None + + def __len__(self): + return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years + + +def img2label_paths(img_paths): + # Define label paths as a function of image paths + sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings + return [x.replace(sa, sb, 1).replace('.' + x.split('.')[-1], '.txt') for x in img_paths] + + +class LoadImagesAndLabels(Dataset): # for training/testing + def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, + cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''): + self.img_size = img_size + self.augment = augment + self.hyp = hyp + self.image_weights = image_weights + self.rect = False if image_weights else rect + self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training) + self.mosaic_border = [-img_size // 2, -img_size // 2] + self.stride = stride + + try: + f = [] # image files + for p in path if isinstance(path, list) else [path]: + p = Path(p) # os-agnostic + if p.is_dir(): # dir + f += glob.glob(str(p / '**' / '*.*'), recursive=True) + elif p.is_file(): # file + with open(p, 'r') as t: + t = t.read().strip().splitlines() + parent = str(p.parent) + os.sep + f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path + else: + raise Exception(f'{prefix}{p} does not exist') + self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats]) + assert self.img_files, f'{prefix}No images found' + except Exception as e: + raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}') + + # Check cache + self.label_files = img2label_paths(self.img_files) # labels + cache_path = Path(self.label_files[0]).parent.with_suffix('.cache') # cached labels + if cache_path.is_file(): + cache = torch.load(cache_path) # load + if cache['hash'] != get_hash(self.label_files + self.img_files) or 'results' not in cache: # changed + cache = self.cache_labels(cache_path, prefix) # re-cache + else: + cache = self.cache_labels(cache_path, prefix) # cache + + # Display cache + [nf, nm, ne, nc, n] = cache.pop('results') # found, missing, empty, corrupted, total + desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted" + tqdm(None, desc=prefix + desc, total=n, initial=n) + assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}' + + # Read cache + cache.pop('hash') # remove hash + labels, shapes = zip(*cache.values()) + self.labels = list(labels) + self.shapes = np.array(shapes, dtype=np.float64) + self.img_files = list(cache.keys()) # update + self.label_files = img2label_paths(cache.keys()) # update + if single_cls: + for x in self.labels: + x[:, 0] = 0 + + n = len(shapes) # number of images + bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index + nb = bi[-1] + 1 # number of batches + self.batch = bi # batch index of image + self.n = n + self.indices = range(n) + + # Rectangular Training + if self.rect: + # Sort by aspect ratio + s = self.shapes # wh + ar = s[:, 1] / s[:, 0] # aspect ratio + irect = ar.argsort() + self.img_files = [self.img_files[i] for i in irect] + self.label_files = [self.label_files[i] for i in irect] + self.labels = [self.labels[i] for i in irect] + self.shapes = s[irect] # wh + ar = ar[irect] + + # Set training image shapes + shapes = [[1, 1]] * nb + for i in range(nb): + ari = ar[bi == i] + mini, maxi = ari.min(), ari.max() + if maxi < 1: + shapes[i] = [maxi, 1] + elif mini > 1: + shapes[i] = [1, 1 / mini] + + self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride + + # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM) + self.imgs = [None] * n + if cache_images: + gb = 0 # Gigabytes of cached images + self.img_hw0, self.img_hw = [None] * n, [None] * n + results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads + pbar = tqdm(enumerate(results), total=n) + for i, x in pbar: + self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i) + gb += self.imgs[i].nbytes + pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)' + + def cache_labels(self, path=Path('./labels.cache'), prefix=''): + # Cache dataset labels, check images and read shapes + x = {} # dict + nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate + pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files)) + for i, (im_file, lb_file) in enumerate(pbar): + try: + # verify images + im = Image.open(im_file) + im.verify() # PIL verify + shape = exif_size(im) # image size + assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels' + + # verify labels + if os.path.isfile(lb_file): + nf += 1 # label found + with open(lb_file, 'r') as f: + l = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels + if len(l): + assert l.shape[1] == 5, 'labels require 5 columns each' + assert (l >= 0).all(), 'negative labels' + assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels' + assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels' + else: + ne += 1 # label empty + l = np.zeros((0, 5), dtype=np.float32) + else: + nm += 1 # label missing + l = np.zeros((0, 5), dtype=np.float32) + x[im_file] = [l, shape] + except Exception as e: + nc += 1 + print(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}') + + pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' for images and labels... " \ + f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted" + + if nf == 0: + print(f'{prefix}WARNING: No labels found in {path}. See {help_url}') + + x['hash'] = get_hash(self.label_files + self.img_files) + x['results'] = [nf, nm, ne, nc, i + 1] + torch.save(x, path) # save for next time + logging.info(f'{prefix}New cache created: {path}') + return x + + def __len__(self): + return len(self.img_files) + + # def __iter__(self): + # self.count = -1 + # print('ran dataset iter') + # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF) + # return self + + def __getitem__(self, index): + index = self.indices[index] # linear, shuffled, or image_weights + + hyp = self.hyp + mosaic = self.mosaic and random.random() < hyp['mosaic'] + if mosaic: + # Load mosaic + img, labels = load_mosaic(self, index) + shapes = None + + # MixUp https://arxiv.org/pdf/1710.09412.pdf + if random.random() < hyp['mixup']: + img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1)) + r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0 + img = (img * r + img2 * (1 - r)).astype(np.uint8) + labels = np.concatenate((labels, labels2), 0) + + else: + # Load image + img, (h0, w0), (h, w) = load_image(self, index) + + # Letterbox + shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape + img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) + shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling + + labels = self.labels[index].copy() + if labels.size: # normalized xywh to pixel xyxy format + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) + + if self.augment: + # Augment imagespace + if not mosaic: + img, labels = random_perspective(img, labels, + degrees=hyp['degrees'], + translate=hyp['translate'], + scale=hyp['scale'], + shear=hyp['shear'], + perspective=hyp['perspective']) + + # Augment colorspace + augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) + + # Apply cutouts + # if random.random() < 0.9: + # labels = cutout(img, labels) + + nL = len(labels) # number of labels + if nL: + labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh + labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1 + labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1 + + if self.augment: + # flip up-down + if random.random() < hyp['flipud']: + img = np.flipud(img) + if nL: + labels[:, 2] = 1 - labels[:, 2] + + # flip left-right + if random.random() < hyp['fliplr']: + img = np.fliplr(img) + if nL: + labels[:, 1] = 1 - labels[:, 1] + + labels_out = torch.zeros((nL, 6)) + if nL: + labels_out[:, 1:] = torch.from_numpy(labels) + + # Convert + img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 + img = np.ascontiguousarray(img) + + return torch.from_numpy(img), labels_out, self.img_files[index], shapes + + @staticmethod + def collate_fn(batch): + img, label, path, shapes = zip(*batch) # transposed + for i, l in enumerate(label): + l[:, 0] = i # add target image index for build_targets() + return torch.stack(img, 0), torch.cat(label, 0), path, shapes + + @staticmethod + def collate_fn4(batch): + img, label, path, shapes = zip(*batch) # transposed + n = len(shapes) // 4 + img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n] + + ho = torch.tensor([[0., 0, 0, 1, 0, 0]]) + wo = torch.tensor([[0., 0, 1, 0, 0, 0]]) + s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale + for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW + i *= 4 + if random.random() < 0.5: + im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[ + 0].type(img[i].type()) + l = label[i] + else: + im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2) + l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s + img4.append(im) + label4.append(l) + + for i, l in enumerate(label4): + l[:, 0] = i # add target image index for build_targets() + + return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4 + + +# Ancillary functions -------------------------------------------------------------------------------------------------- +def load_image(self, index): + # loads 1 image from dataset, returns img, original hw, resized hw + img = self.imgs[index] + if img is None: # not cached + path = self.img_files[index] + img = cv2.imread(path) # BGR + assert img is not None, 'Image Not Found ' + path + h0, w0 = img.shape[:2] # orig hw + r = self.img_size / max(h0, w0) # resize image to img_size + if r != 1: # always resize down, only resize up if training with augmentation + interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR + img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp) + return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized + else: + return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized + + +def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): + r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains + hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) + dtype = img.dtype # uint8 + + x = np.arange(0, 256, dtype=np.int16) + lut_hue = ((x * r[0]) % 180).astype(dtype) + lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) + lut_val = np.clip(x * r[2], 0, 255).astype(dtype) + + img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype) + cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed + + # Histogram equalization + # if random.random() < 0.2: + # for i in range(3): + # img[:, :, i] = cv2.equalizeHist(img[:, :, i]) + + +def load_mosaic(self, index): + # loads images in a 4-mosaic + + labels4 = [] + s = self.img_size + yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y + indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] # 3 additional image indices + for i, index in enumerate(indices): + # Load image + img, _, (h, w) = load_image(self, index) + + # place img in img4 + if i == 0: # top left + img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles + x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) + x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) + elif i == 1: # top right + x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc + x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h + elif i == 2: # bottom left + x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) + x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) + elif i == 3: # bottom right + x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) + x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) + + img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] + padw = x1a - x1b + padh = y1a - y1b + + # Labels + labels = self.labels[index].copy() + if labels.size: + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format + labels4.append(labels) + + # Concat/clip labels + if len(labels4): + labels4 = np.concatenate(labels4, 0) + np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_perspective + # img4, labels4 = replicate(img4, labels4) # replicate + + # Augment + img4, labels4 = random_perspective(img4, labels4, + degrees=self.hyp['degrees'], + translate=self.hyp['translate'], + scale=self.hyp['scale'], + shear=self.hyp['shear'], + perspective=self.hyp['perspective'], + border=self.mosaic_border) # border to remove + + return img4, labels4 + + +def load_mosaic9(self, index): + # loads images in a 9-mosaic + + labels9 = [] + s = self.img_size + indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(8)] # 8 additional image indices + for i, index in enumerate(indices): + # Load image + img, _, (h, w) = load_image(self, index) + + # place img in img9 + if i == 0: # center + img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles + h0, w0 = h, w + c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates + elif i == 1: # top + c = s, s - h, s + w, s + elif i == 2: # top right + c = s + wp, s - h, s + wp + w, s + elif i == 3: # right + c = s + w0, s, s + w0 + w, s + h + elif i == 4: # bottom right + c = s + w0, s + hp, s + w0 + w, s + hp + h + elif i == 5: # bottom + c = s + w0 - w, s + h0, s + w0, s + h0 + h + elif i == 6: # bottom left + c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h + elif i == 7: # left + c = s - w, s + h0 - h, s, s + h0 + elif i == 8: # top left + c = s - w, s + h0 - hp - h, s, s + h0 - hp + + padx, pady = c[:2] + x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords + + # Labels + labels = self.labels[index].copy() + if labels.size: + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format + labels9.append(labels) + + # Image + img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax] + hp, wp = h, w # height, width previous + + # Offset + yc, xc = [int(random.uniform(0, s)) for x in self.mosaic_border] # mosaic center x, y + img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s] + + # Concat/clip labels + if len(labels9): + labels9 = np.concatenate(labels9, 0) + labels9[:, [1, 3]] -= xc + labels9[:, [2, 4]] -= yc + + np.clip(labels9[:, 1:], 0, 2 * s, out=labels9[:, 1:]) # use with random_perspective + # img9, labels9 = replicate(img9, labels9) # replicate + + # Augment + img9, labels9 = random_perspective(img9, labels9, + degrees=self.hyp['degrees'], + translate=self.hyp['translate'], + scale=self.hyp['scale'], + shear=self.hyp['shear'], + perspective=self.hyp['perspective'], + border=self.mosaic_border) # border to remove + + return img9, labels9 + + +def replicate(img, labels): + # Replicate labels + h, w = img.shape[:2] + boxes = labels[:, 1:].astype(int) + x1, y1, x2, y2 = boxes.T + s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels) + for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices + x1b, y1b, x2b, y2b = boxes[i] + bh, bw = y2b - y1b, x2b - x1b + yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y + x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] + img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] + labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) + + return img, labels + + +def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True): + # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232 + shape = img.shape[:2] # current shape [height, width] + if isinstance(new_shape, int): + new_shape = (new_shape, new_shape) + + # Scale ratio (new / old) + r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) + if not scaleup: # only scale down, do not scale up (for better test mAP) + r = min(r, 1.0) + + # Compute padding + ratio = r, r # width, height ratios + new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) + dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding + if auto: # minimum rectangle + dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding + elif scaleFill: # stretch + dw, dh = 0.0, 0.0 + new_unpad = (new_shape[1], new_shape[0]) + ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios + + dw /= 2 # divide padding into 2 sides + dh /= 2 + + if shape[::-1] != new_unpad: # resize + img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) + top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) + left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) + img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border + return img, ratio, (dw, dh) + + +def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)): + # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) + # targets = [cls, xyxy] + + height = img.shape[0] + border[0] * 2 # shape(h,w,c) + width = img.shape[1] + border[1] * 2 + + # Center + C = np.eye(3) + C[0, 2] = -img.shape[1] / 2 # x translation (pixels) + C[1, 2] = -img.shape[0] / 2 # y translation (pixels) + + # Perspective + P = np.eye(3) + P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y) + P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x) + + # Rotation and Scale + R = np.eye(3) + a = random.uniform(-degrees, degrees) + # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations + s = random.uniform(1 - scale, 1 + scale) + # s = 2 ** random.uniform(-scale, scale) + R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) + + # Shear + S = np.eye(3) + S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) + S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) + + # Translation + T = np.eye(3) + T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels) + T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels) + + # Combined rotation matrix + M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT + if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed + if perspective: + img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114)) + else: # affine + img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) + + # Visualize + # import matplotlib.pyplot as plt + # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() + # ax[0].imshow(img[:, :, ::-1]) # base + # ax[1].imshow(img2[:, :, ::-1]) # warped + + # Transform label coordinates + n = len(targets) + if n: + # warp points + xy = np.ones((n * 4, 3)) + xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 + xy = xy @ M.T # transform + if perspective: + xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale + else: # affine + xy = xy[:, :2].reshape(n, 8) + + # create new boxes + x = xy[:, [0, 2, 4, 6]] + y = xy[:, [1, 3, 5, 7]] + xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T + + # # apply angle-based reduction of bounding boxes + # radians = a * math.pi / 180 + # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5 + # x = (xy[:, 2] + xy[:, 0]) / 2 + # y = (xy[:, 3] + xy[:, 1]) / 2 + # w = (xy[:, 2] - xy[:, 0]) * reduction + # h = (xy[:, 3] - xy[:, 1]) * reduction + # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T + + # clip boxes + xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width) + xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height) + + # filter candidates + i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T) + targets = targets[i] + targets[:, 1:5] = xy[i] + + return img, targets + + +def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n) + # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio + w1, h1 = box1[2] - box1[0], box1[3] - box1[1] + w2, h2 = box2[2] - box2[0], box2[3] - box2[1] + ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio + return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates + + +def cutout(image, labels): + # Applies image cutout augmentation https://arxiv.org/abs/1708.04552 + h, w = image.shape[:2] + + def bbox_ioa(box1, box2): + # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2 + box2 = box2.transpose() + + # Get the coordinates of bounding boxes + b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] + b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] + + # Intersection area + inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \ + (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0) + + # box2 area + box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16 + + # Intersection over box2 area + return inter_area / box2_area + + # create random masks + scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction + for s in scales: + mask_h = random.randint(1, int(h * s)) + mask_w = random.randint(1, int(w * s)) + + # box + xmin = max(0, random.randint(0, w) - mask_w // 2) + ymin = max(0, random.randint(0, h) - mask_h // 2) + xmax = min(w, xmin + mask_w) + ymax = min(h, ymin + mask_h) + + # apply random color mask + image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] + + # return unobscured labels + if len(labels) and s > 0.03: + box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) + ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area + labels = labels[ioa < 0.60] # remove >60% obscured labels + + return labels + + +def create_folder(path='./new'): + # Create folder + if os.path.exists(path): + shutil.rmtree(path) # delete output folder + os.makedirs(path) # make new output folder + + +def flatten_recursive(path='../coco128'): + # Flatten a recursive directory by bringing all files to top level + new_path = Path(path + '_flat') + create_folder(new_path) + for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)): + shutil.copyfile(file, new_path / Path(file).name) + + +def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128') + # Convert detection dataset into classification dataset, with one directory per class + + path = Path(path) # images dir + shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing + files = list(path.rglob('*.*')) + n = len(files) # number of files + for im_file in tqdm(files, total=n): + if im_file.suffix[1:] in img_formats: + # image + im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB + h, w = im.shape[:2] + + # labels + lb_file = Path(img2label_paths([str(im_file)])[0]) + if Path(lb_file).exists(): + with open(lb_file, 'r') as f: + lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels + + for j, x in enumerate(lb): + c = int(x[0]) # class + f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename + if not f.parent.is_dir(): + f.parent.mkdir(parents=True) + + b = x[1:] * [w, h, w, h] # box + # b[2:] = b[2:].max() # rectangle to square + b[2:] = b[2:] * 1.2 + 3 # pad + b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int) + + b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image + b[[1, 3]] = np.clip(b[[1, 3]], 0, h) + assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}' + + +def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128') + """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files + # Arguments + path: Path to images directory + weights: Train, val, test weights (list) + """ + path = Path(path) # images dir + files = list(path.rglob('*.*')) + n = len(files) # number of files + indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split + txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files + [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing + for i, img in tqdm(zip(indices, files), total=n): + if img.suffix[1:] in img_formats: + with open(path / txt[i], 'a') as f: + f.write(str(img) + '\n') # add image to txt file diff --git a/lib/yolov5-face_Jan1/utils/face_datasets.py b/lib/yolov5-face_Jan1/utils/face_datasets.py new file mode 100755 index 000000000..efd6f4927 --- /dev/null +++ b/lib/yolov5-face_Jan1/utils/face_datasets.py @@ -0,0 +1,834 @@ +import glob +import logging +import math +import os +import random +import shutil +import time +from itertools import repeat +from multiprocessing.pool import ThreadPool +from pathlib import Path +from threading import Thread + +import cv2 +import numpy as np +import torch +from PIL import Image, ExifTags +from torch.utils.data import Dataset +from tqdm import tqdm + +from utils.general import xyxy2xywh, xywh2xyxy, clean_str +from utils.torch_utils import torch_distributed_zero_first + + +# Parameters +help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' +img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes +vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes +logger = logging.getLogger(__name__) + +# Get orientation exif tag +for orientation in ExifTags.TAGS.keys(): + if ExifTags.TAGS[orientation] == 'Orientation': + break + +def get_hash(files): + # Returns a single hash value of a list of files + return sum(os.path.getsize(f) for f in files if os.path.isfile(f)) + +def img2label_paths(img_paths): + # Define label paths as a function of image paths + sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings + return [x.replace(sa, sb, 1).replace('.' + x.split('.')[-1], '.txt') for x in img_paths] + +def exif_size(img): + # Returns exif-corrected PIL size + s = img.size # (width, height) + try: + rotation = dict(img._getexif().items())[orientation] + if rotation == 6: # rotation 270 + s = (s[1], s[0]) + elif rotation == 8: # rotation 90 + s = (s[1], s[0]) + except: + pass + + return s + +def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False, + rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''): + # Make sure only the first process in DDP process the dataset first, and the following others can use the cache + with torch_distributed_zero_first(rank): + dataset = LoadFaceImagesAndLabels(path, imgsz, batch_size, + augment=augment, # augment images + hyp=hyp, # augmentation hyperparameters + rect=rect, # rectangular training + cache_images=cache, + single_cls=opt.single_cls, + stride=int(stride), + pad=pad, + image_weights=image_weights, + ) + + batch_size = min(batch_size, len(dataset)) + nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers + sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None + loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader + # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader() + dataloader = loader(dataset, + batch_size=batch_size, + num_workers=nw, + sampler=sampler, + pin_memory=True, + collate_fn=LoadFaceImagesAndLabels.collate_fn4 if quad else LoadFaceImagesAndLabels.collate_fn) + return dataloader, dataset +class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader): + """ Dataloader that reuses workers + + Uses same syntax as vanilla DataLoader + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) + self.iterator = super().__iter__() + + def __len__(self): + return len(self.batch_sampler.sampler) + + def __iter__(self): + for i in range(len(self)): + yield next(self.iterator) +class _RepeatSampler(object): + """ Sampler that repeats forever + + Args: + sampler (Sampler) + """ + + def __init__(self, sampler): + self.sampler = sampler + + def __iter__(self): + while True: + yield from iter(self.sampler) + +class LoadFaceImagesAndLabels(Dataset): # for training/testing + def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, + cache_images=False, single_cls=False, stride=32, pad=0.0, rank=-1): + self.img_size = img_size + self.augment = augment + self.hyp = hyp + self.image_weights = image_weights + self.rect = False if image_weights else rect + self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training) + self.mosaic_border = [-img_size // 2, -img_size // 2] + self.stride = stride + + try: + f = [] # image files + for p in path if isinstance(path, list) else [path]: + p = Path(p) # os-agnostic + if p.is_dir(): # dir + f += glob.glob(str(p / '**' / '*.*'), recursive=True) + elif p.is_file(): # file + with open(p, 'r') as t: + t = t.read().strip().splitlines() + parent = str(p.parent) + os.sep + f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path + else: + raise Exception('%s does not exist' % p) + self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats]) + assert self.img_files, 'No images found' + except Exception as e: + raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url)) + + # Check cache + self.label_files = img2label_paths(self.img_files) # labels + cache_path = Path(self.label_files[0]).parent.with_suffix('.cache') # cached labels + if cache_path.is_file(): + cache = torch.load(cache_path) # load + if cache['hash'] != get_hash(self.label_files + self.img_files) or 'results' not in cache: # changed + cache = self.cache_labels(cache_path) # re-cache + else: + cache = self.cache_labels(cache_path) # cache + + # Display cache + [nf, nm, ne, nc, n] = cache.pop('results') # found, missing, empty, corrupted, total + desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted" + tqdm(None, desc=desc, total=n, initial=n) + assert nf > 0 or not augment, f'No labels found in {cache_path}. Can not train without labels. See {help_url}' + + # Read cache + cache.pop('hash') # remove hash + labels, shapes = zip(*cache.values()) + self.labels = list(labels) + self.shapes = np.array(shapes, dtype=np.float64) + self.img_files = list(cache.keys()) # update + self.label_files = img2label_paths(cache.keys()) # update + if single_cls: + for x in self.labels: + x[:, 0] = 0 + + n = len(shapes) # number of images + bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index + nb = bi[-1] + 1 # number of batches + self.batch = bi # batch index of image + self.n = n + self.indices = range(n) + + # Rectangular Training + if self.rect: + # Sort by aspect ratio + s = self.shapes # wh + ar = s[:, 1] / s[:, 0] # aspect ratio + irect = ar.argsort() + self.img_files = [self.img_files[i] for i in irect] + self.label_files = [self.label_files[i] for i in irect] + self.labels = [self.labels[i] for i in irect] + self.shapes = s[irect] # wh + ar = ar[irect] + + # Set training image shapes + shapes = [[1, 1]] * nb + for i in range(nb): + ari = ar[bi == i] + mini, maxi = ari.min(), ari.max() + if maxi < 1: + shapes[i] = [maxi, 1] + elif mini > 1: + shapes[i] = [1, 1 / mini] + + self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride + + # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM) + self.imgs = [None] * n + if cache_images: + gb = 0 # Gigabytes of cached images + self.img_hw0, self.img_hw = [None] * n, [None] * n + results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads + pbar = tqdm(enumerate(results), total=n) + for i, x in pbar: + self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i) + gb += self.imgs[i].nbytes + pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9) + + def cache_labels(self, path=Path('./labels.cache')): + # Cache dataset labels, check images and read shapes + x = {} # dict + nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate + pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files)) + for i, (im_file, lb_file) in enumerate(pbar): + try: + # verify images + im = Image.open(im_file) + im.verify() # PIL verify + shape = exif_size(im) # image size + assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels' + + # verify labels + if os.path.isfile(lb_file): + nf += 1 # label found + with open(lb_file, 'r') as f: + l = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels + if len(l): + assert l.shape[1] == 15, 'labels require 15 columns each' + assert (l >= -1).all(), 'negative labels' + assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels' + assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels' + else: + ne += 1 # label empty + l = np.zeros((0, 15), dtype=np.float32) + else: + nm += 1 # label missing + l = np.zeros((0, 15), dtype=np.float32) + x[im_file] = [l, shape] + except Exception as e: + nc += 1 + print('WARNING: Ignoring corrupted image and/or label %s: %s' % (im_file, e)) + + pbar.desc = f"Scanning '{path.parent / path.stem}' for images and labels... " \ + f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted" + + if nf == 0: + print(f'WARNING: No labels found in {path}. See {help_url}') + + x['hash'] = get_hash(self.label_files + self.img_files) + x['results'] = [nf, nm, ne, nc, i + 1] + torch.save(x, path) # save for next time + logging.info(f"New cache created: {path}") + return x + + def __len__(self): + return len(self.img_files) + + # def __iter__(self): + # self.count = -1 + # print('ran dataset iter') + # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF) + # return self + + def __getitem__(self, index): + index = self.indices[index] # linear, shuffled, or image_weights + + hyp = self.hyp + mosaic = self.mosaic and random.random() < hyp['mosaic'] + if mosaic: + # Load mosaic + img, labels = load_mosaic_face(self, index) + shapes = None + + # MixUp https://arxiv.org/pdf/1710.09412.pdf + if random.random() < hyp['mixup']: + img2, labels2 = load_mosaic_face(self, random.randint(0, self.n - 1)) + r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0 + img = (img * r + img2 * (1 - r)).astype(np.uint8) + labels = np.concatenate((labels, labels2), 0) + + else: + # Load image + img, (h0, w0), (h, w) = load_image(self, index) + + # Letterbox + shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape + img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) + shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling + + # Load labels + labels = [] + x = self.labels[index] + if x.size > 0: + # Normalized xywh to pixel xyxy format + labels = x.copy() + labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width + labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height + labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0] + labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1] + + #labels[:, 5] = ratio[0] * w * x[:, 5] + pad[0] # pad width + labels[:, 5] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 5] + pad[0]) + ( + np.array(x[:, 5] > 0, dtype=np.int32) - 1) + labels[:, 6] = np.array(x[:, 6] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 6] + pad[1]) + ( + np.array(x[:, 6] > 0, dtype=np.int32) - 1) + labels[:, 7] = np.array(x[:, 7] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 7] + pad[0]) + ( + np.array(x[:, 7] > 0, dtype=np.int32) - 1) + labels[:, 8] = np.array(x[:, 8] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 8] + pad[1]) + ( + np.array(x[:, 8] > 0, dtype=np.int32) - 1) + labels[:, 9] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 9] + pad[0]) + ( + np.array(x[:, 9] > 0, dtype=np.int32) - 1) + labels[:, 10] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 10] + pad[1]) + ( + np.array(x[:, 10] > 0, dtype=np.int32) - 1) + labels[:, 11] = np.array(x[:, 11] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 11] + pad[0]) + ( + np.array(x[:, 11] > 0, dtype=np.int32) - 1) + labels[:, 12] = np.array(x[:, 12] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 12] + pad[1]) + ( + np.array(x[:, 12] > 0, dtype=np.int32) - 1) + labels[:, 13] = np.array(x[:, 13] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 13] + pad[0]) + ( + np.array(x[:, 13] > 0, dtype=np.int32) - 1) + labels[:, 14] = np.array(x[:, 14] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 14] + pad[1]) + ( + np.array(x[:, 14] > 0, dtype=np.int32) - 1) + + if self.augment: + # Augment imagespace + if not mosaic: + img, labels = random_perspective(img, labels, + degrees=hyp['degrees'], + translate=hyp['translate'], + scale=hyp['scale'], + shear=hyp['shear'], + perspective=hyp['perspective']) + + # Augment colorspace + augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) + + # Apply cutouts + # if random.random() < 0.9: + # labels = cutout(img, labels) + + nL = len(labels) # number of labels + if nL: + labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh + labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1 + labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1 + + labels[:, [5, 7, 9, 11, 13]] /= img.shape[1] # normalized landmark x 0-1 + labels[:, [5, 7, 9, 11, 13]] = np.where(labels[:, [5, 7, 9, 11, 13]] < 0, -1, labels[:, [5, 7, 9, 11, 13]]) + labels[:, [6, 8, 10, 12, 14]] /= img.shape[0] # normalized landmark y 0-1 + labels[:, [6, 8, 10, 12, 14]] = np.where(labels[:, [6, 8, 10, 12, 14]] < 0, -1, labels[:, [6, 8, 10, 12, 14]]) + + if self.augment: + # flip up-down + if random.random() < hyp['flipud']: + img = np.flipud(img) + if nL: + labels[:, 2] = 1 - labels[:, 2] + + labels[:, 6] = np.where(labels[:,6] < 0, -1, 1 - labels[:, 6]) + labels[:, 8] = np.where(labels[:, 8] < 0, -1, 1 - labels[:, 8]) + labels[:, 10] = np.where(labels[:, 10] < 0, -1, 1 - labels[:, 10]) + labels[:, 12] = np.where(labels[:, 12] < 0, -1, 1 - labels[:, 12]) + labels[:, 14] = np.where(labels[:, 14] < 0, -1, 1 - labels[:, 14]) + + # flip left-right + if random.random() < hyp['fliplr']: + img = np.fliplr(img) + if nL: + labels[:, 1] = 1 - labels[:, 1] + + labels[:, 5] = np.where(labels[:, 5] < 0, -1, 1 - labels[:, 5]) + labels[:, 7] = np.where(labels[:, 7] < 0, -1, 1 - labels[:, 7]) + labels[:, 9] = np.where(labels[:, 9] < 0, -1, 1 - labels[:, 9]) + labels[:, 11] = np.where(labels[:, 11] < 0, -1, 1 - labels[:, 11]) + labels[:, 13] = np.where(labels[:, 13] < 0, -1, 1 - labels[:, 13]) + + #左右镜像的时候,左眼、右眼, 左嘴角、右嘴角无法区分, 应该交换位置,便于网络学习 + eye_left = np.copy(labels[:, [5, 6]]) + mouth_left = np.copy(labels[:, [11, 12]]) + labels[:, [5, 6]] = labels[:, [7, 8]] + labels[:, [7, 8]] = eye_left + labels[:, [11, 12]] = labels[:, [13, 14]] + labels[:, [13, 14]] = mouth_left + + labels_out = torch.zeros((nL, 16)) + if nL: + labels_out[:, 1:] = torch.from_numpy(labels) + #showlabels(img, labels[:, 1:5], labels[:, 5:15]) + + # Convert + img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 + img = np.ascontiguousarray(img) + #print(index, ' --- labels_out: ', labels_out) + #if nL: + #print( ' : landmarks : ', torch.max(labels_out[:, 5:15]), ' --- ', torch.min(labels_out[:, 5:15])) + return torch.from_numpy(img), labels_out, self.img_files[index], shapes + + @staticmethod + def collate_fn(batch): + img, label, path, shapes = zip(*batch) # transposed + for i, l in enumerate(label): + l[:, 0] = i # add target image index for build_targets() + return torch.stack(img, 0), torch.cat(label, 0), path, shapes + + +def showlabels(img, boxs, landmarks): + for box in boxs: + x,y,w,h = box[0] * img.shape[1], box[1] * img.shape[0], box[2] * img.shape[1], box[3] * img.shape[0] + #cv2.rectangle(image, (x,y), (x+w,y+h), (0,255,0), 2) + cv2.rectangle(img, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2) + + for landmark in landmarks: + #cv2.circle(img,(60,60),30,(0,0,255)) + for i in range(5): + cv2.circle(img, (int(landmark[2*i] * img.shape[1]), int(landmark[2*i+1]*img.shape[0])), 3 ,(0,0,255), -1) + cv2.imshow('test', img) + cv2.waitKey(0) + + +def load_mosaic_face(self, index): + # loads images in a mosaic + labels4 = [] + s = self.img_size + yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y + indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] # 3 additional image indices + for i, index in enumerate(indices): + # Load image + img, _, (h, w) = load_image(self, index) + + # place img in img4 + if i == 0: # top left + img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles + x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) + x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) + elif i == 1: # top right + x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc + x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h + elif i == 2: # bottom left + x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) + x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) + elif i == 3: # bottom right + x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) + x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) + + img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] + padw = x1a - x1b + padh = y1a - y1b + + # Labels + x = self.labels[index] + labels = x.copy() + if x.size > 0: # Normalized xywh to pixel xyxy format + #box, x1,y1,x2,y2 + labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw + labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh + labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw + labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh + #10 landmarks + + labels[:, 5] = np.array(x[:, 5] > 0, dtype=np.int32) * (w * x[:, 5] + padw) + (np.array(x[:, 5] > 0, dtype=np.int32) - 1) + labels[:, 6] = np.array(x[:, 6] > 0, dtype=np.int32) * (h * x[:, 6] + padh) + (np.array(x[:, 6] > 0, dtype=np.int32) - 1) + labels[:, 7] = np.array(x[:, 7] > 0, dtype=np.int32) * (w * x[:, 7] + padw) + (np.array(x[:, 7] > 0, dtype=np.int32) - 1) + labels[:, 8] = np.array(x[:, 8] > 0, dtype=np.int32) * (h * x[:, 8] + padh) + (np.array(x[:, 8] > 0, dtype=np.int32) - 1) + labels[:, 9] = np.array(x[:, 9] > 0, dtype=np.int32) * (w * x[:, 9] + padw) + (np.array(x[:, 9] > 0, dtype=np.int32) - 1) + labels[:, 10] = np.array(x[:, 10] > 0, dtype=np.int32) * (h * x[:, 10] + padh) + (np.array(x[:, 10] > 0, dtype=np.int32) - 1) + labels[:, 11] = np.array(x[:, 11] > 0, dtype=np.int32) * (w * x[:, 11] + padw) + (np.array(x[:, 11] > 0, dtype=np.int32) - 1) + labels[:, 12] = np.array(x[:, 12] > 0, dtype=np.int32) * (h * x[:, 12] + padh) + (np.array(x[:, 12] > 0, dtype=np.int32) - 1) + labels[:, 13] = np.array(x[:, 13] > 0, dtype=np.int32) * (w * x[:, 13] + padw) + (np.array(x[:, 13] > 0, dtype=np.int32) - 1) + labels[:, 14] = np.array(x[:, 14] > 0, dtype=np.int32) * (h * x[:, 14] + padh) + (np.array(x[:, 14] > 0, dtype=np.int32) - 1) + labels4.append(labels) + + # Concat/clip labels + if len(labels4): + labels4 = np.concatenate(labels4, 0) + np.clip(labels4[:, 1:5], 0, 2 * s, out=labels4[:, 1:5]) # use with random_perspective + # img4, labels4 = replicate(img4, labels4) # replicate + + #landmarks + labels4[:, 5:] = np.where(labels4[:, 5:] < 0, -1, labels4[:, 5:]) + labels4[:, 5:] = np.where(labels4[:, 5:] > 2 * s, -1, labels4[:, 5:]) + + labels4[:, 5] = np.where(labels4[:, 6] == -1, -1, labels4[:, 5]) + labels4[:, 6] = np.where(labels4[:, 5] == -1, -1, labels4[:, 6]) + + labels4[:, 7] = np.where(labels4[:, 8] == -1, -1, labels4[:, 7]) + labels4[:, 8] = np.where(labels4[:, 7] == -1, -1, labels4[:, 8]) + + labels4[:, 9] = np.where(labels4[:, 10] == -1, -1, labels4[:, 9]) + labels4[:, 10] = np.where(labels4[:, 9] == -1, -1, labels4[:, 10]) + + labels4[:, 11] = np.where(labels4[:, 12] == -1, -1, labels4[:, 11]) + labels4[:, 12] = np.where(labels4[:, 11] == -1, -1, labels4[:, 12]) + + labels4[:, 13] = np.where(labels4[:, 14] == -1, -1, labels4[:, 13]) + labels4[:, 14] = np.where(labels4[:, 13] == -1, -1, labels4[:, 14]) + + # Augment + img4, labels4 = random_perspective(img4, labels4, + degrees=self.hyp['degrees'], + translate=self.hyp['translate'], + scale=self.hyp['scale'], + shear=self.hyp['shear'], + perspective=self.hyp['perspective'], + border=self.mosaic_border) # border to remove + return img4, labels4 + + +# Ancillary functions -------------------------------------------------------------------------------------------------- +def load_image(self, index): + # loads 1 image from dataset, returns img, original hw, resized hw + img = self.imgs[index] + if img is None: # not cached + path = self.img_files[index] + img = cv2.imread(path) # BGR + assert img is not None, 'Image Not Found ' + path + h0, w0 = img.shape[:2] # orig hw + r = self.img_size / max(h0, w0) # resize image to img_size + if r != 1: # always resize down, only resize up if training with augmentation + interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR + img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp) + return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized + else: + return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized + + +def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): + r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains + hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) + dtype = img.dtype # uint8 + + x = np.arange(0, 256, dtype=np.int16) + lut_hue = ((x * r[0]) % 180).astype(dtype) + lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) + lut_val = np.clip(x * r[2], 0, 255).astype(dtype) + + img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype) + cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed + + # Histogram equalization + # if random.random() < 0.2: + # for i in range(3): + # img[:, :, i] = cv2.equalizeHist(img[:, :, i]) + +def replicate(img, labels): + # Replicate labels + h, w = img.shape[:2] + boxes = labels[:, 1:].astype(int) + x1, y1, x2, y2 = boxes.T + s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels) + for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices + x1b, y1b, x2b, y2b = boxes[i] + bh, bw = y2b - y1b, x2b - x1b + yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y + x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] + img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] + labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) + + return img, labels + + +def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True): + # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232 + shape = img.shape[:2] # current shape [height, width] + if isinstance(new_shape, int): + new_shape = (new_shape, new_shape) + + # Scale ratio (new / old) + r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) + if not scaleup: # only scale down, do not scale up (for better test mAP) + r = min(r, 1.0) + + # Compute padding + ratio = r, r # width, height ratios + new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) + dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding + if auto: # minimum rectangle + dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding + elif scaleFill: # stretch + dw, dh = 0.0, 0.0 + new_unpad = (new_shape[1], new_shape[0]) + ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios + + dw /= 2 # divide padding into 2 sides + dh /= 2 + + if shape[::-1] != new_unpad: # resize + img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) + top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) + left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) + img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border + return img, ratio, (dw, dh) + + +def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)): + # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) + # targets = [cls, xyxy] + + height = img.shape[0] + border[0] * 2 # shape(h,w,c) + width = img.shape[1] + border[1] * 2 + + # Center + C = np.eye(3) + C[0, 2] = -img.shape[1] / 2 # x translation (pixels) + C[1, 2] = -img.shape[0] / 2 # y translation (pixels) + + # Perspective + P = np.eye(3) + P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y) + P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x) + + # Rotation and Scale + R = np.eye(3) + a = random.uniform(-degrees, degrees) + # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations + s = random.uniform(1 - scale, 1 + scale) + # s = 2 ** random.uniform(-scale, scale) + R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) + + # Shear + S = np.eye(3) + S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) + S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) + + # Translation + T = np.eye(3) + T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels) + T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels) + + # Combined rotation matrix + M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT + if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed + if perspective: + img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114)) + else: # affine + img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) + + # Visualize + # import matplotlib.pyplot as plt + # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() + # ax[0].imshow(img[:, :, ::-1]) # base + # ax[1].imshow(img2[:, :, ::-1]) # warped + + # Transform label coordinates + n = len(targets) + if n: + # warp points + #xy = np.ones((n * 4, 3)) + xy = np.ones((n * 9, 3)) + xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]].reshape(n * 9, 2) # x1y1, x2y2, x1y2, x2y1 + xy = xy @ M.T # transform + if perspective: + xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 18) # rescale + else: # affine + xy = xy[:, :2].reshape(n, 18) + + # create new boxes + x = xy[:, [0, 2, 4, 6]] + y = xy[:, [1, 3, 5, 7]] + + landmarks = xy[:, [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]] + mask = np.array(targets[:, 5:] > 0, dtype=np.int32) + landmarks = landmarks * mask + landmarks = landmarks + mask - 1 + + landmarks = np.where(landmarks < 0, -1, landmarks) + landmarks[:, [0, 2, 4, 6, 8]] = np.where(landmarks[:, [0, 2, 4, 6, 8]] > width, -1, landmarks[:, [0, 2, 4, 6, 8]]) + landmarks[:, [1, 3, 5, 7, 9]] = np.where(landmarks[:, [1, 3, 5, 7, 9]] > height, -1,landmarks[:, [1, 3, 5, 7, 9]]) + + landmarks[:, 0] = np.where(landmarks[:, 1] == -1, -1, landmarks[:, 0]) + landmarks[:, 1] = np.where(landmarks[:, 0] == -1, -1, landmarks[:, 1]) + + landmarks[:, 2] = np.where(landmarks[:, 3] == -1, -1, landmarks[:, 2]) + landmarks[:, 3] = np.where(landmarks[:, 2] == -1, -1, landmarks[:, 3]) + + landmarks[:, 4] = np.where(landmarks[:, 5] == -1, -1, landmarks[:, 4]) + landmarks[:, 5] = np.where(landmarks[:, 4] == -1, -1, landmarks[:, 5]) + + landmarks[:, 6] = np.where(landmarks[:, 7] == -1, -1, landmarks[:, 6]) + landmarks[:, 7] = np.where(landmarks[:, 6] == -1, -1, landmarks[:, 7]) + + landmarks[:, 8] = np.where(landmarks[:, 9] == -1, -1, landmarks[:, 8]) + landmarks[:, 9] = np.where(landmarks[:, 8] == -1, -1, landmarks[:, 9]) + + targets[:,5:] = landmarks + + xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T + + # # apply angle-based reduction of bounding boxes + # radians = a * math.pi / 180 + # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5 + # x = (xy[:, 2] + xy[:, 0]) / 2 + # y = (xy[:, 3] + xy[:, 1]) / 2 + # w = (xy[:, 2] - xy[:, 0]) * reduction + # h = (xy[:, 3] - xy[:, 1]) * reduction + # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T + + # clip boxes + xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width) + xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height) + + # filter candidates + i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T) + targets = targets[i] + targets[:, 1:5] = xy[i] + + return img, targets + + +def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1): # box1(4,n), box2(4,n) + # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio + w1, h1 = box1[2] - box1[0], box1[3] - box1[1] + w2, h2 = box2[2] - box2[0], box2[3] - box2[1] + ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio + return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates + + +def cutout(image, labels): + # Applies image cutout augmentation https://arxiv.org/abs/1708.04552 + h, w = image.shape[:2] + + def bbox_ioa(box1, box2): + # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2 + box2 = box2.transpose() + + # Get the coordinates of bounding boxes + b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] + b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] + + # Intersection area + inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \ + (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0) + + # box2 area + box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16 + + # Intersection over box2 area + return inter_area / box2_area + + # create random masks + scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction + for s in scales: + mask_h = random.randint(1, int(h * s)) + mask_w = random.randint(1, int(w * s)) + + # box + xmin = max(0, random.randint(0, w) - mask_w // 2) + ymin = max(0, random.randint(0, h) - mask_h // 2) + xmax = min(w, xmin + mask_w) + ymax = min(h, ymin + mask_h) + + # apply random color mask + image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] + + # return unobscured labels + if len(labels) and s > 0.03: + box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) + ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area + labels = labels[ioa < 0.60] # remove >60% obscured labels + + return labels + + +def create_folder(path='./new'): + # Create folder + if os.path.exists(path): + shutil.rmtree(path) # delete output folder + os.makedirs(path) # make new output folder + + +def flatten_recursive(path='../coco128'): + # Flatten a recursive directory by bringing all files to top level + new_path = Path(path + '_flat') + create_folder(new_path) + for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)): + shutil.copyfile(file, new_path / Path(file).name) + + +def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128') + # Convert detection dataset into classification dataset, with one directory per class + + path = Path(path) # images dir + shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing + files = list(path.rglob('*.*')) + n = len(files) # number of files + for im_file in tqdm(files, total=n): + if im_file.suffix[1:] in img_formats: + # image + im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB + h, w = im.shape[:2] + + # labels + lb_file = Path(img2label_paths([str(im_file)])[0]) + if Path(lb_file).exists(): + with open(lb_file, 'r') as f: + lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels + + for j, x in enumerate(lb): + c = int(x[0]) # class + f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename + if not f.parent.is_dir(): + f.parent.mkdir(parents=True) + + b = x[1:] * [w, h, w, h] # box + # b[2:] = b[2:].max() # rectangle to square + b[2:] = b[2:] * 1.2 + 3 # pad + b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int) + + b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image + b[[1, 3]] = np.clip(b[[1, 3]], 0, h) + assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}' + + +def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128') + """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files + # Arguments + path: Path to images directory + weights: Train, val, test weights (list) + """ + path = Path(path) # images dir + files = list(path.rglob('*.*')) + n = len(files) # number of files + indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split + txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files + [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing + for i, img in tqdm(zip(indices, files), total=n): + if img.suffix[1:] in img_formats: + with open(path / txt[i], 'a') as f: + f.write(str(img) + '\n') # add image to txt file diff --git a/lib/yolov5-face_Jan1/utils/general.py b/lib/yolov5-face_Jan1/utils/general.py new file mode 100755 index 000000000..204de55d3 --- /dev/null +++ b/lib/yolov5-face_Jan1/utils/general.py @@ -0,0 +1,646 @@ +# General utils + +import glob +import logging +import math +import os +import random +import re +import subprocess +import time +from pathlib import Path + +import cv2 +import numpy as np +import torch +import torchvision +import yaml + +from utils.google_utils import gsutil_getsize +from utils.metrics import fitness +from utils.torch_utils import init_torch_seeds + +# Settings +torch.set_printoptions(linewidth=320, precision=5, profile='long') +np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 +cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) +os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads + + +def set_logging(rank=-1): + logging.basicConfig( + format="%(message)s", + level=logging.INFO if rank in [-1, 0] else logging.WARN) + + +def init_seeds(seed=0): + # Initialize random number generator (RNG) seeds + random.seed(seed) + np.random.seed(seed) + init_torch_seeds(seed) + + +def get_latest_run(search_dir='.'): + # Return path to most recent 'last.pt' in /runs (i.e. to --resume from) + last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) + return max(last_list, key=os.path.getctime) if last_list else '' + + +def check_online(): + # Check internet connectivity + import socket + try: + socket.create_connection(("1.1.1.1", 53)) # check host accesability + return True + except OSError: + return False + + +def check_git_status(): + # Recommend 'git pull' if code is out of date + print(colorstr('github: '), end='') + try: + assert Path('.git').exists(), 'skipping check (not a git repository)' + assert not Path('/workspace').exists(), 'skipping check (Docker image)' # not Path('/.dockerenv').exists() + assert check_online(), 'skipping check (offline)' + + cmd = 'git fetch && git config --get remote.origin.url' # github repo url + url = subprocess.check_output(cmd, shell=True).decode()[:-1] + cmd = 'git rev-list $(git rev-parse --abbrev-ref HEAD)..origin/master --count' # commits behind + n = int(subprocess.check_output(cmd, shell=True)) + if n > 0: + print(f"⚠️ WARNING: code is out of date by {n} {'commits' if n > 1 else 'commmit'}. " + f"Use 'git pull' to update or 'git clone {url}' to download latest.") + else: + print(f'up to date with {url} ✅') + except Exception as e: + print(e) + + +def check_requirements(file='requirements.txt'): + # Check installed dependencies meet requirements + import pkg_resources + requirements = pkg_resources.parse_requirements(Path(file).open()) + requirements = [x.name + ''.join(*x.specs) if len(x.specs) else x.name for x in requirements] + pkg_resources.require(requirements) # DistributionNotFound or VersionConflict exception if requirements not met + + +def check_img_size(img_size, s=32): + # Verify img_size is a multiple of stride s + new_size = make_divisible(img_size, int(s)) # ceil gs-multiple + if new_size != img_size: + print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size)) + return new_size + + +def check_file(file): + # Search for file if not found + if os.path.isfile(file) or file == '': + return file + else: + files = glob.glob('./**/' + file, recursive=True) # find file + assert len(files), 'File Not Found: %s' % file # assert file was found + assert len(files) == 1, "Multiple files match '%s', specify exact path: %s" % (file, files) # assert unique + return files[0] # return file + + +def check_dataset(dict): + # Download dataset if not found locally + val, s = dict.get('val'), dict.get('download') + if val and len(val): + val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path + if not all(x.exists() for x in val): + print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()]) + if s and len(s): # download script + print('Downloading %s ...' % s) + if s.startswith('http') and s.endswith('.zip'): # URL + f = Path(s).name # filename + torch.hub.download_url_to_file(s, f) + r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip + else: # bash script + r = os.system(s) + print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value + else: + raise Exception('Dataset not found.') + + +def make_divisible(x, divisor): + # Returns x evenly divisible by divisor + return math.ceil(x / divisor) * divisor + + +def clean_str(s): + # Cleans a string by replacing special characters with underscore _ + return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s) + + +def one_cycle(y1=0.0, y2=1.0, steps=100): + # lambda function for sinusoidal ramp from y1 to y2 + return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 + + +def colorstr(*input): + # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') + *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string + colors = {'black': '\033[30m', # basic colors + 'red': '\033[31m', + 'green': '\033[32m', + 'yellow': '\033[33m', + 'blue': '\033[34m', + 'magenta': '\033[35m', + 'cyan': '\033[36m', + 'white': '\033[37m', + 'bright_black': '\033[90m', # bright colors + 'bright_red': '\033[91m', + 'bright_green': '\033[92m', + 'bright_yellow': '\033[93m', + 'bright_blue': '\033[94m', + 'bright_magenta': '\033[95m', + 'bright_cyan': '\033[96m', + 'bright_white': '\033[97m', + 'end': '\033[0m', # misc + 'bold': '\033[1m', + 'underline': '\033[4m'} + return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] + + +def labels_to_class_weights(labels, nc=80): + # Get class weights (inverse frequency) from training labels + if labels[0] is None: # no labels loaded + return torch.Tensor() + + labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO + classes = labels[:, 0].astype(np.int) # labels = [class xywh] + weights = np.bincount(classes, minlength=nc) # occurrences per class + + # Prepend gridpoint count (for uCE training) + # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image + # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start + + weights[weights == 0] = 1 # replace empty bins with 1 + weights = 1 / weights # number of targets per class + weights /= weights.sum() # normalize + return torch.from_numpy(weights) + + +def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): + # Produces image weights based on class_weights and image contents + class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels]) + image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) + # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample + return image_weights + + +def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) + # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ + # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') + # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') + # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco + # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet + x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, + 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] + return x + + +def xyxy2xywh(x): + # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center + y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center + y[:, 2] = x[:, 2] - x[:, 0] # width + y[:, 3] = x[:, 3] - x[:, 1] # height + return y + + +def xywh2xyxy(x): + # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x + y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y + y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x + y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y + return y + + +def xywhn2xyxy(x, w=640, h=640, padw=32, padh=32): + # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x + y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y + y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x + y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y + return y + + +def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): + # Rescale coords (xyxy) from img1_shape to img0_shape + if ratio_pad is None: # calculate from img0_shape + gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new + pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding + else: + gain = ratio_pad[0][0] + pad = ratio_pad[1] + + coords[:, [0, 2]] -= pad[0] # x padding + coords[:, [1, 3]] -= pad[1] # y padding + coords[:, :4] /= gain + clip_coords(coords, img0_shape) + return coords + + +def clip_coords(boxes, img_shape): + # Clip bounding xyxy bounding boxes to image shape (height, width) + boxes[:, 0].clamp_(0, img_shape[1]) # x1 + boxes[:, 1].clamp_(0, img_shape[0]) # y1 + boxes[:, 2].clamp_(0, img_shape[1]) # x2 + boxes[:, 3].clamp_(0, img_shape[0]) # y2 + + +def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-9): + # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 + box2 = box2.T + + # Get the coordinates of bounding boxes + if x1y1x2y2: # x1, y1, x2, y2 = box1 + b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] + b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] + else: # transform from xywh to xyxy + b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 + b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 + b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 + b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 + + # Intersection area + inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ + (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) + + # Union Area + w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps + w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps + union = w1 * h1 + w2 * h2 - inter + eps + + iou = inter / union + if GIoU or DIoU or CIoU: + # convex (smallest enclosing box) width + cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) + ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height + if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 + c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared + rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared + if DIoU: + return iou - rho2 / c2 # DIoU + elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 + v = (4 / math.pi ** 2) * \ + torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) + with torch.no_grad(): + alpha = v / ((1 + eps) - iou + v) + return iou - (rho2 / c2 + v * alpha) # CIoU + else: # GIoU https://arxiv.org/pdf/1902.09630.pdf + c_area = cw * ch + eps # convex area + return iou - (c_area - union) / c_area # GIoU + else: + return iou # IoU + + +def box_iou(box1, box2): + # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py + """ + Return intersection-over-union (Jaccard index) of boxes. + Both sets of boxes are expected to be in (x1, y1, x2, y2) format. + Arguments: + box1 (Tensor[N, 4]) + box2 (Tensor[M, 4]) + Returns: + iou (Tensor[N, M]): the NxM matrix containing the pairwise + IoU values for every element in boxes1 and boxes2 + """ + + def box_area(box): + # box = 4xn + return (box[2] - box[0]) * (box[3] - box[1]) + + area1 = box_area(box1.T) + area2 = box_area(box2.T) + + # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) + inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - + torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) + # iou = inter / (area1 + area2 - inter) + return inter / (area1[:, None] + area2 - inter) + + +def wh_iou(wh1, wh2): + # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 + wh1 = wh1[:, None] # [N,1,2] + wh2 = wh2[None] # [1,M,2] + inter = torch.min(wh1, wh2).prod(2) # [N,M] + # iou = inter / (area1 + area2 - inter) + return inter / (wh1.prod(2) + wh2.prod(2) - inter) + +def jaccard_diou(box_a, box_b, iscrowd:bool=False): + use_batch = True + if box_a.dim() == 2: + use_batch = False + box_a = box_a[None, ...] + box_b = box_b[None, ...] + + inter = intersect(box_a, box_b) + area_a = ((box_a[:, :, 2]-box_a[:, :, 0]) * + (box_a[:, :, 3]-box_a[:, :, 1])).unsqueeze(2).expand_as(inter) # [A,B] + area_b = ((box_b[:, :, 2]-box_b[:, :, 0]) * + (box_b[:, :, 3]-box_b[:, :, 1])).unsqueeze(1).expand_as(inter) # [A,B] + union = area_a + area_b - inter + x1 = ((box_a[:, :, 2]+box_a[:, :, 0]) / 2).unsqueeze(2).expand_as(inter) + y1 = ((box_a[:, :, 3]+box_a[:, :, 1]) / 2).unsqueeze(2).expand_as(inter) + x2 = ((box_b[:, :, 2]+box_b[:, :, 0]) / 2).unsqueeze(1).expand_as(inter) + y2 = ((box_b[:, :, 3]+box_b[:, :, 1]) / 2).unsqueeze(1).expand_as(inter) + + t1 = box_a[:, :, 1].unsqueeze(2).expand_as(inter) + b1 = box_a[:, :, 3].unsqueeze(2).expand_as(inter) + l1 = box_a[:, :, 0].unsqueeze(2).expand_as(inter) + r1 = box_a[:, :, 2].unsqueeze(2).expand_as(inter) + + t2 = box_b[:, :, 1].unsqueeze(1).expand_as(inter) + b2 = box_b[:, :, 3].unsqueeze(1).expand_as(inter) + l2 = box_b[:, :, 0].unsqueeze(1).expand_as(inter) + r2 = box_b[:, :, 2].unsqueeze(1).expand_as(inter) + + cr = torch.max(r1, r2) + cl = torch.min(l1, l2) + ct = torch.min(t1, t2) + cb = torch.max(b1, b2) + D = (((x2 - x1)**2 + (y2 - y1)**2) / ((cr-cl)**2 + (cb-ct)**2 + 1e-7)) + out = inter / area_a if iscrowd else inter / (union + 1e-7) - D ** 0.7 + return out if use_batch else out.squeeze(0) + + +def non_max_suppression_face(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()): + """Performs Non-Maximum Suppression (NMS) on inference results + Returns: + detections with shape: nx6 (x1, y1, x2, y2, conf, cls) + """ + + nc = prediction.shape[2] - 15 # number of classes + xc = prediction[..., 4] > conf_thres # candidates + + # Settings + min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height + time_limit = 10.0 # seconds to quit after + redundant = True # require redundant detections + multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img) + merge = False # use merge-NMS + + t = time.time() + output = [torch.zeros((0, 16), device=prediction.device)] * prediction.shape[0] + for xi, x in enumerate(prediction): # image index, image inference + # Apply constraints + # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height + x = x[xc[xi]] # confidence + + # Cat apriori labels if autolabelling + if labels and len(labels[xi]): + l = labels[xi] + v = torch.zeros((len(l), nc + 15), device=x.device) + v[:, :4] = l[:, 1:5] # box + v[:, 4] = 1.0 # conf + v[range(len(l)), l[:, 0].long() + 15] = 1.0 # cls + x = torch.cat((x, v), 0) + + # If none remain process next image + if not x.shape[0]: + continue + + # Compute conf + x[:, 15:] *= x[:, 4:5] # conf = obj_conf * cls_conf + + # Box (center x, center y, width, height) to (x1, y1, x2, y2) + box = xywh2xyxy(x[:, :4]) + + # Detections matrix nx6 (xyxy, conf, landmarks, cls) + if multi_label: + i, j = (x[:, 15:] > conf_thres).nonzero(as_tuple=False).T + x = torch.cat((box[i], x[i, j + 15, None], x[:, 5:15] ,j[:, None].float()), 1) + else: # best class only + conf, j = x[:, 15:].max(1, keepdim=True) + x = torch.cat((box, conf, x[:, 5:15], j.float()), 1)[conf.view(-1) > conf_thres] + + # Filter by class + if classes is not None: + x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] + + # If none remain process next image + n = x.shape[0] # number of boxes + if not n: + continue + + # Batched NMS + c = x[:, 15:16] * (0 if agnostic else max_wh) # classes + boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores + i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS + #if i.shape[0] > max_det: # limit detections + # i = i[:max_det] + if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) + # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) + iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix + weights = iou * scores[None] # box weights + x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes + if redundant: + i = i[iou.sum(1) > 1] # require redundancy + + output[xi] = x[i] + if (time.time() - t) > time_limit: + break # time limit exceeded + + return output + + +def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()): + """Performs Non-Maximum Suppression (NMS) on inference results + + Returns: + detections with shape: nx6 (x1, y1, x2, y2, conf, cls) + """ + + nc = prediction.shape[2] - 5 # number of classes + xc = prediction[..., 4] > conf_thres # candidates + + # Settings + # (pixels) minimum and maximum box width and height + min_wh, max_wh = 2, 4096 + #max_det = 300 # maximum number of detections per image + #max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() + time_limit = 10.0 # seconds to quit after + redundant = True # require redundant detections + multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img) + merge = False # use merge-NMS + + t = time.time() + output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0] + for xi, x in enumerate(prediction): # image index, image inference + # Apply constraints + # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height + x = x[xc[xi]] # confidence + + # Cat apriori labels if autolabelling + if labels and len(labels[xi]): + l = labels[xi] + v = torch.zeros((len(l), nc + 5), device=x.device) + v[:, :4] = l[:, 1:5] # box + v[:, 4] = 1.0 # conf + v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls + x = torch.cat((x, v), 0) + + # If none remain process next image + if not x.shape[0]: + continue + + # Compute conf + x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf + + # Box (center x, center y, width, height) to (x1, y1, x2, y2) + box = xywh2xyxy(x[:, :4]) + + # Detections matrix nx6 (xyxy, conf, cls) + if multi_label: + i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T + x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) + else: # best class only + conf, j = x[:, 5:].max(1, keepdim=True) + x = torch.cat((box, conf, j.float()), 1)[ + conf.view(-1) > conf_thres] + + # Filter by class + if classes is not None: + x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] + + # Apply finite constraint + # if not torch.isfinite(x).all(): + # x = x[torch.isfinite(x).all(1)] + + # Check shape + n = x.shape[0] # number of boxes + if not n: # no boxes + continue + #elif n > max_nms: # excess boxes + # x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence + x = x[x[:, 4].argsort(descending=True)] # sort by confidence + + # Batched NMS + c = x[:, 5:6] * (0 if agnostic else max_wh) # classes + boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores + i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS + #if i.shape[0] > max_det: # limit detections + # i = i[:max_det] + if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) + # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) + iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix + weights = iou * scores[None] # box weights + x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes + if redundant: + i = i[iou.sum(1) > 1] # require redundancy + + output[xi] = x[i] + if (time.time() - t) > time_limit: + print(f'WARNING: NMS time limit {time_limit}s exceeded') + break # time limit exceeded + + return output + + +def strip_optimizer(f='weights/best.pt', s=''): # from utils.general import *; strip_optimizer() + # Strip optimizer from 'f' to finalize training, optionally save as 's' + x = torch.load(f, map_location=torch.device('cpu')) + for key in 'optimizer', 'training_results', 'wandb_id': + x[key] = None + x['epoch'] = -1 + x['model'].half() # to FP16 + for p in x['model'].parameters(): + p.requires_grad = False + torch.save(x, s or f) + mb = os.path.getsize(s or f) / 1E6 # filesize + print('Optimizer stripped from %s,%s %.1fMB' % (f, (' saved as %s,' % s) if s else '', mb)) + + +def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''): + # Print mutation results to evolve.txt (for use with train.py --evolve) + a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys + b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values + c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) + print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) + + if bucket: + url = 'gs://%s/evolve.txt' % bucket + if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0): + os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local + + with open('evolve.txt', 'a') as f: # append result + f.write(c + b + '\n') + x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows + x = x[np.argsort(-fitness(x))] # sort + np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness + + # Save yaml + for i, k in enumerate(hyp.keys()): + hyp[k] = float(x[0, i + 7]) + with open(yaml_file, 'w') as f: + results = tuple(x[0, :7]) + c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) + f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n') + yaml.dump(hyp, f, sort_keys=False) + + if bucket: + os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload + + +def apply_classifier(x, model, img, im0): + # applies a second stage classifier to yolo outputs + im0 = [im0] if isinstance(im0, np.ndarray) else im0 + for i, d in enumerate(x): # per image + if d is not None and len(d): + d = d.clone() + + # Reshape and pad cutouts + b = xyxy2xywh(d[:, :4]) # boxes + b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square + b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad + d[:, :4] = xywh2xyxy(b).long() + + # Rescale boxes from img_size to im0 size + scale_coords(img.shape[2:], d[:, :4], im0[i].shape) + + # Classes + pred_cls1 = d[:, 5].long() + ims = [] + for j, a in enumerate(d): # per item + cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] + im = cv2.resize(cutout, (224, 224)) # BGR + # cv2.imwrite('test%i.jpg' % j, cutout) + + # BGR to RGB, to 3x416x416 + im = im[:, :, ::-1].transpose(2, 0, 1) + im = np.ascontiguousarray( + im, dtype=np.float32) # uint8 to float32 + im /= 255.0 # 0 - 255 to 0.0 - 1.0 + ims.append(im) + + pred_cls2 = model(torch.Tensor(ims).to(d.device) + ).argmax(1) # classifier prediction + # retain matching class detections + x[i] = x[i][pred_cls1 == pred_cls2] + + return x + + +def increment_path(path, exist_ok=True, sep=''): + # Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc. + path = Path(path) # os-agnostic + if (path.exists() and exist_ok) or (not path.exists()): + return str(path) + else: + dirs = glob.glob(f"{path}{sep}*") # similar paths + matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs] + i = [int(m.groups()[0]) for m in matches if m] # indices + n = max(i) + 1 if i else 2 # increment number + return f"{path}{sep}{n}" # update path diff --git a/lib/yolov5-face_Jan1/utils/google_utils.py b/lib/yolov5-face_Jan1/utils/google_utils.py new file mode 100644 index 000000000..024dc7802 --- /dev/null +++ b/lib/yolov5-face_Jan1/utils/google_utils.py @@ -0,0 +1,122 @@ +# Google utils: https://cloud.google.com/storage/docs/reference/libraries + +import os +import platform +import subprocess +import time +from pathlib import Path + +import requests +import torch + + +def gsutil_getsize(url=''): + # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du + s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8') + return eval(s.split(' ')[0]) if len(s) else 0 # bytes + + +def attempt_download(file, repo='ultralytics/yolov5'): + # Attempt file download if does not exist + file = Path(str(file).strip().replace("'", '').lower()) + + if not file.exists(): + try: + response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api + assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...] + tag = response['tag_name'] # i.e. 'v1.0' + except: # fallback plan + assets = ['yolov5.pt', 'yolov5.pt', 'yolov5l.pt', 'yolov5x.pt'] + tag = subprocess.check_output('git tag', shell=True).decode('utf-8').split('\n')[-2] + + name = file.name + if name in assets: + msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/' + redundant = False # second download option + try: # GitHub + url = f'https://github.com/{repo}/releases/download/{tag}/{name}' + print(f'Downloading {url} to {file}...') + torch.hub.download_url_to_file(url, file) + assert file.exists() and file.stat().st_size > 1E6 # check + except Exception as e: # GCP + print(f'Download error: {e}') + assert redundant, 'No secondary mirror' + url = f'https://storage.googleapis.com/{repo}/ckpt/{name}' + print(f'Downloading {url} to {file}...') + os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights) + finally: + if not file.exists() or file.stat().st_size < 1E6: # check + file.unlink(missing_ok=True) # remove partial downloads + print(f'ERROR: Download failure: {msg}') + print('') + return + + +def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'): + # Downloads a file from Google Drive. from yolov5.utils.google_utils import *; gdrive_download() + t = time.time() + file = Path(file) + cookie = Path('cookie') # gdrive cookie + print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='') + file.unlink(missing_ok=True) # remove existing file + cookie.unlink(missing_ok=True) # remove existing cookie + + # Attempt file download + out = "NUL" if platform.system() == "Windows" else "/dev/null" + os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}') + if os.path.exists('cookie'): # large file + s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}' + else: # small file + s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"' + r = os.system(s) # execute, capture return + cookie.unlink(missing_ok=True) # remove existing cookie + + # Error check + if r != 0: + file.unlink(missing_ok=True) # remove partial + print('Download error ') # raise Exception('Download error') + return r + + # Unzip if archive + if file.suffix == '.zip': + print('unzipping... ', end='') + os.system(f'unzip -q {file}') # unzip + file.unlink() # remove zip to free space + + print(f'Done ({time.time() - t:.1f}s)') + return r + + +def get_token(cookie="./cookie"): + with open(cookie) as f: + for line in f: + if "download" in line: + return line.split()[-1] + return "" + +# def upload_blob(bucket_name, source_file_name, destination_blob_name): +# # Uploads a file to a bucket +# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python +# +# storage_client = storage.Client() +# bucket = storage_client.get_bucket(bucket_name) +# blob = bucket.blob(destination_blob_name) +# +# blob.upload_from_filename(source_file_name) +# +# print('File {} uploaded to {}.'.format( +# source_file_name, +# destination_blob_name)) +# +# +# def download_blob(bucket_name, source_blob_name, destination_file_name): +# # Uploads a blob from a bucket +# storage_client = storage.Client() +# bucket = storage_client.get_bucket(bucket_name) +# blob = bucket.blob(source_blob_name) +# +# blob.download_to_filename(destination_file_name) +# +# print('Blob {} downloaded to {}.'.format( +# source_blob_name, +# destination_file_name)) diff --git a/lib/yolov5-face_Jan1/utils/infer_utils.py b/lib/yolov5-face_Jan1/utils/infer_utils.py new file mode 100755 index 000000000..9dc428cd4 --- /dev/null +++ b/lib/yolov5-face_Jan1/utils/infer_utils.py @@ -0,0 +1,36 @@ +import torch + + + +def decode_infer(output, stride): + # logging.info(torch.tensor(output.shape[0])) + # logging.info(output.shape) + # # bz is batch-size + # bz = tuple(torch.tensor(output.shape[0])) + # gridsize = tuple(torch.tensor(output.shape[-1])) + # logging.info(gridsize) + sh = torch.tensor(output.shape) + bz = sh[0] + gridsize = sh[-1] + + output = output.permute(0, 2, 3, 1) + output = output.view(bz, gridsize, gridsize, self.gt_per_grid, 5+self.numclass) + x1y1, x2y2, conf, prob = torch.split( + output, [2, 2, 1, self.numclass], dim=4) + + shiftx = torch.arange(0, gridsize, dtype=torch.float32) + shifty = torch.arange(0, gridsize, dtype=torch.float32) + shifty, shiftx = torch.meshgrid([shiftx, shifty]) + shiftx = shiftx.unsqueeze(-1).repeat(bz, 1, 1, self.gt_per_grid) + shifty = shifty.unsqueeze(-1).repeat(bz, 1, 1, self.gt_per_grid) + + xy_grid = torch.stack([shiftx, shifty], dim=4).cuda() + x1y1 = (xy_grid+0.5-torch.exp(x1y1))*stride + x2y2 = (xy_grid+0.5+torch.exp(x2y2))*stride + + xyxy = torch.cat((x1y1, x2y2), dim=4) + conf = torch.sigmoid(conf) + prob = torch.sigmoid(prob) + output = torch.cat((xyxy, conf, prob), 4) + output = output.view(bz, -1, 5+self.numclass) + return output \ No newline at end of file diff --git a/lib/yolov5-face_Jan1/utils/loss.py b/lib/yolov5-face_Jan1/utils/loss.py new file mode 100644 index 000000000..8211db9f5 --- /dev/null +++ b/lib/yolov5-face_Jan1/utils/loss.py @@ -0,0 +1,304 @@ +# Loss functions + +import torch +import torch.nn as nn +import numpy as np +from utils.general import bbox_iou +from utils.torch_utils import is_parallel + + +def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 + # return positive, negative label smoothing BCE targets + return 1.0 - 0.5 * eps, 0.5 * eps + + +class BCEBlurWithLogitsLoss(nn.Module): + # BCEwithLogitLoss() with reduced missing label effects. + def __init__(self, alpha=0.05): + super(BCEBlurWithLogitsLoss, self).__init__() + self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss() + self.alpha = alpha + + def forward(self, pred, true): + loss = self.loss_fcn(pred, true) + pred = torch.sigmoid(pred) # prob from logits + dx = pred - true # reduce only missing label effects + # dx = (pred - true).abs() # reduce missing label and false label effects + alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) + loss *= alpha_factor + return loss.mean() + + +class FocalLoss(nn.Module): + # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) + def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): + super(FocalLoss, self).__init__() + self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() + self.gamma = gamma + self.alpha = alpha + self.reduction = loss_fcn.reduction + self.loss_fcn.reduction = 'none' # required to apply FL to each element + + def forward(self, pred, true): + loss = self.loss_fcn(pred, true) + # p_t = torch.exp(-loss) + # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability + + # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py + pred_prob = torch.sigmoid(pred) # prob from logits + p_t = true * pred_prob + (1 - true) * (1 - pred_prob) + alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) + modulating_factor = (1.0 - p_t) ** self.gamma + loss *= alpha_factor * modulating_factor + + if self.reduction == 'mean': + return loss.mean() + elif self.reduction == 'sum': + return loss.sum() + else: # 'none' + return loss + + +class QFocalLoss(nn.Module): + # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) + def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): + super(QFocalLoss, self).__init__() + self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() + self.gamma = gamma + self.alpha = alpha + self.reduction = loss_fcn.reduction + self.loss_fcn.reduction = 'none' # required to apply FL to each element + + def forward(self, pred, true): + loss = self.loss_fcn(pred, true) + + pred_prob = torch.sigmoid(pred) # prob from logits + alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) + modulating_factor = torch.abs(true - pred_prob) ** self.gamma + loss *= alpha_factor * modulating_factor + + if self.reduction == 'mean': + return loss.mean() + elif self.reduction == 'sum': + return loss.sum() + else: # 'none' + return loss + +class WingLoss(nn.Module): + def __init__(self, w=10, e=2): + super(WingLoss, self).__init__() + # https://arxiv.org/pdf/1711.06753v4.pdf Figure 5 + self.w = w + self.e = e + self.C = self.w - self.w * np.log(1 + self.w / self.e) + + def forward(self, x, t, sigma=1): + weight = torch.ones_like(t) + weight[torch.where(t==-1)] = 0 + diff = weight * (x - t) + abs_diff = diff.abs() + flag = (abs_diff.data < self.w).float() + y = flag * self.w * torch.log(1 + abs_diff / self.e) + (1 - flag) * (abs_diff - self.C) + return y.sum() + +class LandmarksLoss(nn.Module): + # BCEwithLogitLoss() with reduced missing label effects. + def __init__(self, alpha=1.0): + super(LandmarksLoss, self).__init__() + self.loss_fcn = WingLoss()#nn.SmoothL1Loss(reduction='sum') + self.alpha = alpha + + def forward(self, pred, truel, mask): + loss = self.loss_fcn(pred*mask, truel*mask) + return loss / (torch.sum(mask) + 10e-14) + + +def compute_loss(p, targets, model): # predictions, targets, model + device = targets.device + lcls, lbox, lobj, lmark = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) + tcls, tbox, indices, anchors, tlandmarks, lmks_mask = build_targets(p, targets, model) # targets + h = model.hyp # hyperparameters + + # Define criteria + BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) # weight=model.class_weights) + BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) + + landmarks_loss = LandmarksLoss(1.0) + + # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 + cp, cn = smooth_BCE(eps=0.0) + + # Focal loss + g = h['fl_gamma'] # focal loss gamma + if g > 0: + BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) + + # Losses + nt = 0 # number of targets + no = len(p) # number of outputs + balance = [4.0, 1.0, 0.4] if no == 3 else [4.0, 1.0, 0.4, 0.1] # P3-5 or P3-6 + for i, pi in enumerate(p): # layer index, layer predictions + b, a, gj, gi = indices[i] # image, anchor, gridy, gridx + tobj = torch.zeros_like(pi[..., 0], device=device) # target obj + + n = b.shape[0] # number of targets + if n: + nt += n # cumulative targets + ps = pi[b, a, gj, gi] # prediction subset corresponding to targets + + # Regression + pxy = ps[:, :2].sigmoid() * 2. - 0.5 + pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] + pbox = torch.cat((pxy, pwh), 1) # predicted box + iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target) + lbox += (1.0 - iou).mean() # iou loss + + # Objectness + tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio + + # Classification + if model.nc > 1: # cls loss (only if multiple classes) + t = torch.full_like(ps[:, 15:], cn, device=device) # targets + t[range(n), tcls[i]] = cp + lcls += BCEcls(ps[:, 15:], t) # BCE + + # Append targets to text file + # with open('targets.txt', 'a') as file: + # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] + + #landmarks loss + #plandmarks = ps[:,5:15].sigmoid() * 8. - 4. + plandmarks = ps[:,5:15] + + plandmarks[:, 0:2] = plandmarks[:, 0:2] * anchors[i] + plandmarks[:, 2:4] = plandmarks[:, 2:4] * anchors[i] + plandmarks[:, 4:6] = plandmarks[:, 4:6] * anchors[i] + plandmarks[:, 6:8] = plandmarks[:, 6:8] * anchors[i] + plandmarks[:, 8:10] = plandmarks[:,8:10] * anchors[i] + + lmark += landmarks_loss(plandmarks, tlandmarks[i], lmks_mask[i]) + + + lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss + + s = 3 / no # output count scaling + lbox *= h['box'] * s + lobj *= h['obj'] * s * (1.4 if no == 4 else 1.) + lcls *= h['cls'] * s + lmark *= h['landmark'] * s + + bs = tobj.shape[0] # batch size + + loss = lbox + lobj + lcls + lmark + return loss * bs, torch.cat((lbox, lobj, lcls, lmark, loss)).detach() + + +def build_targets(p, targets, model): + # Build targets for compute_loss(), input targets(image,class,x,y,w,h) + det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module + na, nt = det.na, targets.shape[0] # number of anchors, targets + tcls, tbox, indices, anch, landmarks, lmks_mask = [], [], [], [], [], [] + #gain = torch.ones(7, device=targets.device) # normalized to gridspace gain + gain = torch.ones(17, device=targets.device) + ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) + targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices + + g = 0.5 # bias + off = torch.tensor([[0, 0], + [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m + # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm + ], device=targets.device).float() * g # offsets + + for i in range(det.nl): + anchors = det.anchors[i] + gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain + #landmarks 10 + gain[6:16] = torch.tensor(p[i].shape)[[3, 2, 3, 2, 3, 2, 3, 2, 3, 2]] # xyxy gain + + # Match targets to anchors + t = targets * gain + if nt: + # Matches + r = t[:, :, 4:6] / anchors[:, None] # wh ratio + j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare + # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) + t = t[j] # filter + + # Offsets + gxy = t[:, 2:4] # grid xy + gxi = gain[[2, 3]] - gxy # inverse + j, k = ((gxy % 1. < g) & (gxy > 1.)).T + l, m = ((gxi % 1. < g) & (gxi > 1.)).T + j = torch.stack((torch.ones_like(j), j, k, l, m)) + t = t.repeat((5, 1, 1))[j] + offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] + else: + t = targets[0] + offsets = 0 + + # Define + b, c = t[:, :2].long().T # image, class + gxy = t[:, 2:4] # grid xy + gwh = t[:, 4:6] # grid wh + gij = (gxy - offsets).long() + gi, gj = gij.T # grid xy indices + + # Append + a = t[:, 16].long() # anchor indices + indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices + tbox.append(torch.cat((gxy - gij, gwh), 1)) # box + anch.append(anchors[a]) # anchors + tcls.append(c) # class + + #landmarks + lks = t[:,6:16] + #lks_mask = lks > 0 + #lks_mask = lks_mask.float() + lks_mask = torch.where(lks < 0, torch.full_like(lks, 0.), torch.full_like(lks, 1.0)) + + #应该是关键点的坐标除以anch的宽高才对,便于模型学习。使用gwh会导致不同关键点的编码不同,没有统一的参考标准 + + lks[:, [0, 1]] = (lks[:, [0, 1]] - gij) + lks[:, [2, 3]] = (lks[:, [2, 3]] - gij) + lks[:, [4, 5]] = (lks[:, [4, 5]] - gij) + lks[:, [6, 7]] = (lks[:, [6, 7]] - gij) + lks[:, [8, 9]] = (lks[:, [8, 9]] - gij) + + ''' + #anch_w = torch.ones(5, device=targets.device).fill_(anchors[0][0]) + #anch_wh = torch.ones(5, device=targets.device) + anch_f_0 = (a == 0).unsqueeze(1).repeat(1, 5) + anch_f_1 = (a == 1).unsqueeze(1).repeat(1, 5) + anch_f_2 = (a == 2).unsqueeze(1).repeat(1, 5) + lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_0, lks[:, [0, 2, 4, 6, 8]] / anchors[0][0], lks[:, [0, 2, 4, 6, 8]]) + lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_1, lks[:, [0, 2, 4, 6, 8]] / anchors[1][0], lks[:, [0, 2, 4, 6, 8]]) + lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_2, lks[:, [0, 2, 4, 6, 8]] / anchors[2][0], lks[:, [0, 2, 4, 6, 8]]) + + lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_0, lks[:, [1, 3, 5, 7, 9]] / anchors[0][1], lks[:, [1, 3, 5, 7, 9]]) + lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_1, lks[:, [1, 3, 5, 7, 9]] / anchors[1][1], lks[:, [1, 3, 5, 7, 9]]) + lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_2, lks[:, [1, 3, 5, 7, 9]] / anchors[2][1], lks[:, [1, 3, 5, 7, 9]]) + + #new_lks = lks[lks_mask>0] + #print('new_lks: min --- ', torch.min(new_lks), ' max --- ', torch.max(new_lks)) + + lks_mask_1 = torch.where(lks < -3, torch.full_like(lks, 0.), torch.full_like(lks, 1.0)) + lks_mask_2 = torch.where(lks > 3, torch.full_like(lks, 0.), torch.full_like(lks, 1.0)) + + lks_mask_new = lks_mask * lks_mask_1 * lks_mask_2 + lks_mask_new[:, 0] = lks_mask_new[:, 0] * lks_mask_new[:, 1] + lks_mask_new[:, 1] = lks_mask_new[:, 0] * lks_mask_new[:, 1] + lks_mask_new[:, 2] = lks_mask_new[:, 2] * lks_mask_new[:, 3] + lks_mask_new[:, 3] = lks_mask_new[:, 2] * lks_mask_new[:, 3] + lks_mask_new[:, 4] = lks_mask_new[:, 4] * lks_mask_new[:, 5] + lks_mask_new[:, 5] = lks_mask_new[:, 4] * lks_mask_new[:, 5] + lks_mask_new[:, 6] = lks_mask_new[:, 6] * lks_mask_new[:, 7] + lks_mask_new[:, 7] = lks_mask_new[:, 6] * lks_mask_new[:, 7] + lks_mask_new[:, 8] = lks_mask_new[:, 8] * lks_mask_new[:, 9] + lks_mask_new[:, 9] = lks_mask_new[:, 8] * lks_mask_new[:, 9] + ''' + lks_mask_new = lks_mask + lmks_mask.append(lks_mask_new) + landmarks.append(lks) + #print('lks: ', lks.size()) + + return tcls, tbox, indices, anch, landmarks, lmks_mask diff --git a/lib/yolov5-face_Jan1/utils/metrics.py b/lib/yolov5-face_Jan1/utils/metrics.py new file mode 100644 index 000000000..99d5bcfaf --- /dev/null +++ b/lib/yolov5-face_Jan1/utils/metrics.py @@ -0,0 +1,200 @@ +# Model validation metrics + +from pathlib import Path + +import matplotlib.pyplot as plt +import numpy as np +import torch + +from . import general + + +def fitness(x): + # Model fitness as a weighted combination of metrics + w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] + return (x[:, :4] * w).sum(1) + + +def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='precision-recall_curve.png', names=[]): + """ Compute the average precision, given the recall and precision curves. + Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. + # Arguments + tp: True positives (nparray, nx1 or nx10). + conf: Objectness value from 0-1 (nparray). + pred_cls: Predicted object classes (nparray). + target_cls: True object classes (nparray). + plot: Plot precision-recall curve at mAP@0.5 + save_dir: Plot save directory + # Returns + The average precision as computed in py-faster-rcnn. + """ + + # Sort by objectness + i = np.argsort(-conf) + tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] + + # Find unique classes + unique_classes = np.unique(target_cls) + + # Create Precision-Recall curve and compute AP for each class + px, py = np.linspace(0, 1, 1000), [] # for plotting + pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898 + s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95) + ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s) + for ci, c in enumerate(unique_classes): + i = pred_cls == c + n_l = (target_cls == c).sum() # number of labels + n_p = i.sum() # number of predictions + + if n_p == 0 or n_l == 0: + continue + else: + # Accumulate FPs and TPs + fpc = (1 - tp[i]).cumsum(0) + tpc = tp[i].cumsum(0) + + # Recall + recall = tpc / (n_l + 1e-16) # recall curve + r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases + + # Precision + precision = tpc / (tpc + fpc) # precision curve + p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score + + # AP from recall-precision curve + for j in range(tp.shape[1]): + ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) + if plot and (j == 0): + py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5 + + # Compute F1 score (harmonic mean of precision and recall) + f1 = 2 * p * r / (p + r + 1e-16) + + if plot: + plot_pr_curve(px, py, ap, save_dir, names) + + return p, r, ap, f1, unique_classes.astype('int32') + + +def compute_ap(recall, precision): + """ Compute the average precision, given the recall and precision curves + # Arguments + recall: The recall curve (list) + precision: The precision curve (list) + # Returns + Average precision, precision curve, recall curve + """ + + # Append sentinel values to beginning and end + mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01])) + mpre = np.concatenate(([1.], precision, [0.])) + + # Compute the precision envelope + mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) + + # Integrate area under curve + method = 'interp' # methods: 'continuous', 'interp' + if method == 'interp': + x = np.linspace(0, 1, 101) # 101-point interp (COCO) + ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate + else: # 'continuous' + i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes + ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve + + return ap, mpre, mrec + + +class ConfusionMatrix: + # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix + def __init__(self, nc, conf=0.25, iou_thres=0.45): + self.matrix = np.zeros((nc + 1, nc + 1)) + self.nc = nc # number of classes + self.conf = conf + self.iou_thres = iou_thres + + def process_batch(self, detections, labels): + """ + Return intersection-over-union (Jaccard index) of boxes. + Both sets of boxes are expected to be in (x1, y1, x2, y2) format. + Arguments: + detections (Array[N, 6]), x1, y1, x2, y2, conf, class + labels (Array[M, 5]), class, x1, y1, x2, y2 + Returns: + None, updates confusion matrix accordingly + """ + detections = detections[detections[:, 4] > self.conf] + gt_classes = labels[:, 0].int() + detection_classes = detections[:, 5].int() + iou = general.box_iou(labels[:, 1:], detections[:, :4]) + + x = torch.where(iou > self.iou_thres) + if x[0].shape[0]: + matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() + if x[0].shape[0] > 1: + matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 1], return_index=True)[1]] + matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 0], return_index=True)[1]] + else: + matches = np.zeros((0, 3)) + + n = matches.shape[0] > 0 + m0, m1, _ = matches.transpose().astype(np.int16) + for i, gc in enumerate(gt_classes): + j = m0 == i + if n and sum(j) == 1: + self.matrix[gc, detection_classes[m1[j]]] += 1 # correct + else: + self.matrix[gc, self.nc] += 1 # background FP + + if n: + for i, dc in enumerate(detection_classes): + if not any(m1 == i): + self.matrix[self.nc, dc] += 1 # background FN + + def matrix(self): + return self.matrix + + def plot(self, save_dir='', names=()): + try: + import seaborn as sn + + array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize + array[array < 0.005] = np.nan # don't annotate (would appear as 0.00) + + fig = plt.figure(figsize=(12, 9), tight_layout=True) + sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size + labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels + sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True, + xticklabels=names + ['background FN'] if labels else "auto", + yticklabels=names + ['background FP'] if labels else "auto").set_facecolor((1, 1, 1)) + fig.axes[0].set_xlabel('True') + fig.axes[0].set_ylabel('Predicted') + fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250) + except Exception as e: + pass + + def print(self): + for i in range(self.nc + 1): + print(' '.join(map(str, self.matrix[i]))) + + +# Plots ---------------------------------------------------------------------------------------------------------------- + +def plot_pr_curve(px, py, ap, save_dir='.', names=()): + fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) + py = np.stack(py, axis=1) + + if 0 < len(names) < 21: # show mAP in legend if < 10 classes + for i, y in enumerate(py.T): + ax.plot(px, y, linewidth=1, label=f'{names[i]} %.3f' % ap[i, 0]) # plot(recall, precision) + else: + ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision) + + ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean()) + ax.set_xlabel('Recall') + ax.set_ylabel('Precision') + ax.set_xlim(0, 1) + ax.set_ylim(0, 1) + plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") + fig.savefig(Path(save_dir) / 'precision_recall_curve.png', dpi=250) diff --git a/lib/yolov5-face_Jan1/utils/plots.py b/lib/yolov5-face_Jan1/utils/plots.py new file mode 100644 index 000000000..0c008f165 --- /dev/null +++ b/lib/yolov5-face_Jan1/utils/plots.py @@ -0,0 +1,413 @@ +# Plotting utils + +import glob +import math +import os +import random +from copy import copy +from pathlib import Path + +import cv2 +import matplotlib +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +import seaborn as sns +import torch +import yaml +from PIL import Image, ImageDraw +from scipy.signal import butter, filtfilt + +from utils.general import xywh2xyxy, xyxy2xywh +from utils.metrics import fitness + +# Settings +matplotlib.rc('font', **{'size': 11}) +matplotlib.use('Agg') # for writing to files only + + +def color_list(): + # Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb + def hex2rgb(h): + return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) + + return [hex2rgb(h) for h in plt.rcParams['axes.prop_cycle'].by_key()['color']] + + +def hist2d(x, y, n=100): + # 2d histogram used in labels.png and evolve.png + xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) + hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) + xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) + yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) + return np.log(hist[xidx, yidx]) + + +def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): + # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy + def butter_lowpass(cutoff, fs, order): + nyq = 0.5 * fs + normal_cutoff = cutoff / nyq + return butter(order, normal_cutoff, btype='low', analog=False) + + b, a = butter_lowpass(cutoff, fs, order=order) + return filtfilt(b, a, data) # forward-backward filter + + +def plot_one_box(x, img, color=None, label=None, line_thickness=None): + # Plots one bounding box on image img + tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness + color = color or [random.randint(0, 255) for _ in range(3)] + c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) + cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) + if label: + tf = max(tl - 1, 1) # font thickness + t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] + c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 + cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled + cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) + + +def plot_wh_methods(): # from utils.plots import *; plot_wh_methods() + # Compares the two methods for width-height anchor multiplication + # https://github.com/ultralytics/yolov3/issues/168 + x = np.arange(-4.0, 4.0, .1) + ya = np.exp(x) + yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2 + + fig = plt.figure(figsize=(6, 3), tight_layout=True) + plt.plot(x, ya, '.-', label='YOLOv3') + plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2') + plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6') + plt.xlim(left=-4, right=4) + plt.ylim(bottom=0, top=6) + plt.xlabel('input') + plt.ylabel('output') + plt.grid() + plt.legend() + fig.savefig('comparison.png', dpi=200) + + +def output_to_target(output): + # Convert model output to target format [batch_id, class_id, x, y, w, h, conf] + targets = [] + for i, o in enumerate(output): + for *box, conf, cls in o.cpu().numpy(): + targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf]) + return np.array(targets) + + +def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16): + # Plot image grid with labels + + if isinstance(images, torch.Tensor): + images = images.cpu().float().numpy() + if isinstance(targets, torch.Tensor): + targets = targets.cpu().numpy() + + # un-normalise + if np.max(images[0]) <= 1: + images *= 255 + + tl = 3 # line thickness + tf = max(tl - 1, 1) # font thickness + bs, _, h, w = images.shape # batch size, _, height, width + bs = min(bs, max_subplots) # limit plot images + ns = np.ceil(bs ** 0.5) # number of subplots (square) + + # Check if we should resize + scale_factor = max_size / max(h, w) + if scale_factor < 1: + h = math.ceil(scale_factor * h) + w = math.ceil(scale_factor * w) + + # colors = color_list() # list of colors + mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init + for i, img in enumerate(images): + if i == max_subplots: # if last batch has fewer images than we expect + break + + block_x = int(w * (i // ns)) + block_y = int(h * (i % ns)) + + img = img.transpose(1, 2, 0) + if scale_factor < 1: + img = cv2.resize(img, (w, h)) + + mosaic[block_y:block_y + h, block_x:block_x + w, :] = img + if len(targets) > 0: + image_targets = targets[targets[:, 0] == i] + boxes = xywh2xyxy(image_targets[:, 2:6]).T + classes = image_targets[:, 1].astype('int') + labels = image_targets.shape[1] == 6 # labels if no conf column + conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred) + + if boxes.shape[1]: + if boxes.max() <= 1.01: # if normalized with tolerance 0.01 + boxes[[0, 2]] *= w # scale to pixels + boxes[[1, 3]] *= h + elif scale_factor < 1: # absolute coords need scale if image scales + boxes *= scale_factor + boxes[[0, 2]] += block_x + boxes[[1, 3]] += block_y + for j, box in enumerate(boxes.T): + cls = int(classes[j]) + # color = colors[cls % len(colors)] + cls = names[cls] if names else cls + if labels or conf[j] > 0.25: # 0.25 conf thresh + label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j]) + plot_one_box(box, mosaic, label=label, color=None, line_thickness=tl) + + # Draw image filename labels + if paths: + label = Path(paths[i]).name[:40] # trim to 40 char + t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] + cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf, + lineType=cv2.LINE_AA) + + # Image border + cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3) + + if fname: + r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size + mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA) + # cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save + Image.fromarray(mosaic).save(fname) # PIL save + return mosaic + + +def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''): + # Plot LR simulating training for full epochs + optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals + y = [] + for _ in range(epochs): + scheduler.step() + y.append(optimizer.param_groups[0]['lr']) + plt.plot(y, '.-', label='LR') + plt.xlabel('epoch') + plt.ylabel('LR') + plt.grid() + plt.xlim(0, epochs) + plt.ylim(0) + plt.savefig(Path(save_dir) / 'LR.png', dpi=200) + plt.close() + + +def plot_test_txt(): # from utils.plots import *; plot_test() + # Plot test.txt histograms + x = np.loadtxt('test.txt', dtype=np.float32) + box = xyxy2xywh(x[:, :4]) + cx, cy = box[:, 0], box[:, 1] + + fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) + ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) + ax.set_aspect('equal') + plt.savefig('hist2d.png', dpi=300) + + fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) + ax[0].hist(cx, bins=600) + ax[1].hist(cy, bins=600) + plt.savefig('hist1d.png', dpi=200) + + +def plot_targets_txt(): # from utils.plots import *; plot_targets_txt() + # Plot targets.txt histograms + x = np.loadtxt('targets.txt', dtype=np.float32).T + s = ['x targets', 'y targets', 'width targets', 'height targets'] + fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) + ax = ax.ravel() + for i in range(4): + ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std())) + ax[i].legend() + ax[i].set_title(s[i]) + plt.savefig('targets.jpg', dpi=200) + + +def plot_study_txt(path='study/', x=None): # from utils.plots import *; plot_study_txt() + # Plot study.txt generated by test.py + fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True) + ax = ax.ravel() + + fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True) + for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']]: + y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T + x = np.arange(y.shape[1]) if x is None else np.array(x) + s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)'] + for i in range(7): + ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8) + ax[i].set_title(s[i]) + + j = y[3].argmax() + 1 + ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8, + label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO')) + + ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5], + 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet') + + ax2.grid() + ax2.set_yticks(np.arange(30, 60, 5)) + ax2.set_xlim(0, 30) + ax2.set_ylim(29, 51) + ax2.set_xlabel('GPU Speed (ms/img)') + ax2.set_ylabel('COCO AP val') + ax2.legend(loc='lower right') + plt.savefig('test_study.png', dpi=300) + + +def plot_labels(labels, save_dir=Path(''), loggers=None): + # plot dataset labels + print('Plotting labels... ') + c, b = labels[:, 0], labels[:, 1:5].transpose() # classes, boxes + nc = int(c.max() + 1) # number of classes + colors = color_list() + x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height']) + + # seaborn correlogram + sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) + plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200) + plt.close() + + # matplotlib labels + matplotlib.use('svg') # faster + ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() + ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) + ax[0].set_xlabel('classes') + sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9) + sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9) + + # rectangles + labels[:, 1:3] = 0.5 # center + labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000 + img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255) + # for cls, *box in labels[:1000]: + # ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot + ax[1].imshow(img) + ax[1].axis('off') + + for a in [0, 1, 2, 3]: + for s in ['top', 'right', 'left', 'bottom']: + ax[a].spines[s].set_visible(False) + + plt.savefig(save_dir / 'labels.jpg', dpi=200) + matplotlib.use('Agg') + plt.close() + + # loggers + for k, v in loggers.items() or {}: + if k == 'wandb' and v: + v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}) + + +def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution() + # Plot hyperparameter evolution results in evolve.txt + with open(yaml_file) as f: + hyp = yaml.load(f, Loader=yaml.SafeLoader) + x = np.loadtxt('evolve.txt', ndmin=2) + f = fitness(x) + # weights = (f - f.min()) ** 2 # for weighted results + plt.figure(figsize=(10, 12), tight_layout=True) + matplotlib.rc('font', **{'size': 8}) + for i, (k, v) in enumerate(hyp.items()): + y = x[:, i + 7] + # mu = (y * weights).sum() / weights.sum() # best weighted result + mu = y[f.argmax()] # best single result + plt.subplot(6, 5, i + 1) + plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none') + plt.plot(mu, f.max(), 'k+', markersize=15) + plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters + if i % 5 != 0: + plt.yticks([]) + print('%15s: %.3g' % (k, mu)) + plt.savefig('evolve.png', dpi=200) + print('\nPlot saved as evolve.png') + + +def profile_idetection(start=0, stop=0, labels=(), save_dir=''): + # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection() + ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel() + s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS'] + files = list(Path(save_dir).glob('frames*.txt')) + for fi, f in enumerate(files): + try: + results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows + n = results.shape[1] # number of rows + x = np.arange(start, min(stop, n) if stop else n) + results = results[:, x] + t = (results[0] - results[0].min()) # set t0=0s + results[0] = x + for i, a in enumerate(ax): + if i < len(results): + label = labels[fi] if len(labels) else f.stem.replace('frames_', '') + a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5) + a.set_title(s[i]) + a.set_xlabel('time (s)') + # if fi == len(files) - 1: + # a.set_ylim(bottom=0) + for side in ['top', 'right']: + a.spines[side].set_visible(False) + else: + a.remove() + except Exception as e: + print('Warning: Plotting error for %s; %s' % (f, e)) + + ax[1].legend() + plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200) + + +def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay() + # Plot training 'results*.txt', overlaying train and val losses + s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends + t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles + for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): + results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T + n = results.shape[1] # number of rows + x = range(start, min(stop, n) if stop else n) + fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True) + ax = ax.ravel() + for i in range(5): + for j in [i, i + 5]: + y = results[j, x] + ax[i].plot(x, y, marker='.', label=s[j]) + # y_smooth = butter_lowpass_filtfilt(y) + # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j]) + + ax[i].set_title(t[i]) + ax[i].legend() + ax[i].set_ylabel(f) if i == 0 else None # add filename + fig.savefig(f.replace('.txt', '.png'), dpi=200) + + +def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''): + # Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp') + fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) + ax = ax.ravel() + s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall', + 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95'] + if bucket: + # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id] + files = ['results%g.txt' % x for x in id] + c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id) + os.system(c) + else: + files = list(Path(save_dir).glob('results*.txt')) + assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir) + for fi, f in enumerate(files): + try: + results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T + n = results.shape[1] # number of rows + x = range(start, min(stop, n) if stop else n) + for i in range(10): + y = results[i, x] + if i in [0, 1, 2, 5, 6, 7]: + y[y == 0] = np.nan # don't show zero loss values + # y /= y[0] # normalize + label = labels[fi] if len(labels) else f.stem + ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8) + ax[i].set_title(s[i]) + # if i in [5, 6, 7]: # share train and val loss y axes + # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) + except Exception as e: + print('Warning: Plotting error for %s; %s' % (f, e)) + + ax[1].legend() + fig.savefig(Path(save_dir) / 'results.png', dpi=200) diff --git a/lib/yolov5-face_Jan1/utils/torch_utils.py b/lib/yolov5-face_Jan1/utils/torch_utils.py new file mode 100644 index 000000000..2cb09e71c --- /dev/null +++ b/lib/yolov5-face_Jan1/utils/torch_utils.py @@ -0,0 +1,294 @@ +# PyTorch utils + +import logging +import math +import os +import subprocess +import time +from contextlib import contextmanager +from copy import deepcopy +from pathlib import Path + +import torch +import torch.backends.cudnn as cudnn +import torch.nn as nn +import torch.nn.functional as F +import torchvision + +try: + import thop # for FLOPS computation +except ImportError: + thop = None +logger = logging.getLogger(__name__) + + +@contextmanager +def torch_distributed_zero_first(local_rank: int): + """ + Decorator to make all processes in distributed training wait for each local_master to do something. + """ + if local_rank not in [-1, 0]: + torch.distributed.barrier() + yield + if local_rank == 0: + torch.distributed.barrier() + + +def init_torch_seeds(seed=0): + # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html + torch.manual_seed(seed) + if seed == 0: # slower, more reproducible + cudnn.benchmark, cudnn.deterministic = False, True + else: # faster, less reproducible + cudnn.benchmark, cudnn.deterministic = True, False + + +def git_describe(): + # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe + if Path('.git').exists(): + return subprocess.check_output('git describe --tags --long --always', shell=True).decode('utf-8')[:-1] + else: + return '' + + +def select_device(device='', batch_size=None): + # device = 'cpu' or '0' or '0,1,2,3' + s = f'YOLOv5 {git_describe()} torch {torch.__version__} ' # string + cpu = device.lower() == 'cpu' + if cpu: + os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False + elif device: # non-cpu device requested + os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable + assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability + + cuda = not cpu and torch.cuda.is_available() + if cuda: + n = torch.cuda.device_count() + if n > 1 and batch_size: # check that batch_size is compatible with device_count + assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' + space = ' ' * len(s) + for i, d in enumerate(device.split(',') if device else range(n)): + p = torch.cuda.get_device_properties(i) + s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB + else: + s += 'CPU\n' + + logger.info(s) # skip a line + return torch.device('cuda:0' if cuda else 'cpu') + + +def time_synchronized(): + # pytorch-accurate time + if torch.cuda.is_available(): + torch.cuda.synchronize() + return time.time() + + +def profile(x, ops, n=100, device=None): + # profile a pytorch module or list of modules. Example usage: + # x = torch.randn(16, 3, 640, 640) # input + # m1 = lambda x: x * torch.sigmoid(x) + # m2 = nn.SiLU() + # profile(x, [m1, m2], n=100) # profile speed over 100 iterations + + device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') + x = x.to(device) + x.requires_grad = True + print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '') + print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}") + for m in ops if isinstance(ops, list) else [ops]: + m = m.to(device) if hasattr(m, 'to') else m # device + m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type + dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward + try: + flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS + except: + flops = 0 + + for _ in range(n): + t[0] = time_synchronized() + y = m(x) + t[1] = time_synchronized() + try: + _ = y.sum().backward() + t[2] = time_synchronized() + except: # no backward method + t[2] = float('nan') + dtf += (t[1] - t[0]) * 1000 / n # ms per op forward + dtb += (t[2] - t[1]) * 1000 / n # ms per op backward + + s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' + s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list' + p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters + print(f'{p:12.4g}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}') + + +def is_parallel(model): + return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) + + +def intersect_dicts(da, db, exclude=()): + # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values + return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape} + + +def initialize_weights(model): + for m in model.modules(): + t = type(m) + if t is nn.Conv2d: + pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif t is nn.BatchNorm2d: + m.eps = 1e-3 + m.momentum = 0.03 + elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]: + m.inplace = True + + +def find_modules(model, mclass=nn.Conv2d): + # Finds layer indices matching module class 'mclass' + return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] + + +def sparsity(model): + # Return global model sparsity + a, b = 0., 0. + for p in model.parameters(): + a += p.numel() + b += (p == 0).sum() + return b / a + + +def prune(model, amount=0.3): + # Prune model to requested global sparsity + import torch.nn.utils.prune as prune + print('Pruning model... ', end='') + for name, m in model.named_modules(): + if isinstance(m, nn.Conv2d): + prune.l1_unstructured(m, name='weight', amount=amount) # prune + prune.remove(m, 'weight') # make permanent + print(' %.3g global sparsity' % sparsity(model)) + + +def fuse_conv_and_bn(conv, bn): + # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ + fusedconv = nn.Conv2d(conv.in_channels, + conv.out_channels, + kernel_size=conv.kernel_size, + stride=conv.stride, + padding=conv.padding, + groups=conv.groups, + bias=True).requires_grad_(False).to(conv.weight.device) + + # prepare filters + w_conv = conv.weight.clone().view(conv.out_channels, -1) + w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) + fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size())) + + # prepare spatial bias + b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias + b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) + fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) + + return fusedconv + + +def model_info(model, verbose=False, img_size=640): + # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320] + n_p = sum(x.numel() for x in model.parameters()) # number parameters + n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients + if verbose: + print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) + for i, (name, p) in enumerate(model.named_parameters()): + name = name.replace('module_list.', '') + print('%5g %40s %9s %12g %20s %10.3g %10.3g' % + (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) + + try: # FLOPS + from thop import profile + stride = int(model.stride.max()) if hasattr(model, 'stride') else 32 + img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input + flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS + img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float + fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS + except (ImportError, Exception): + fs = '' + + logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") + + +def load_classifier(name='resnet101', n=2): + # Loads a pretrained model reshaped to n-class output + model = torchvision.models.__dict__[name](pretrained=True) + + # ResNet model properties + # input_size = [3, 224, 224] + # input_space = 'RGB' + # input_range = [0, 1] + # mean = [0.485, 0.456, 0.406] + # std = [0.229, 0.224, 0.225] + + # Reshape output to n classes + filters = model.fc.weight.shape[1] + model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True) + model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True) + model.fc.out_features = n + return model + + +def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) + # scales img(bs,3,y,x) by ratio constrained to gs-multiple + if ratio == 1.0: + return img + else: + h, w = img.shape[2:] + s = (int(h * ratio), int(w * ratio)) # new size + img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize + if not same_shape: # pad/crop img + h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)] + return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean + + +def copy_attr(a, b, include=(), exclude=()): + # Copy attributes from b to a, options to only include [...] and to exclude [...] + for k, v in b.__dict__.items(): + if (len(include) and k not in include) or k.startswith('_') or k in exclude: + continue + else: + setattr(a, k, v) + + +class ModelEMA: + """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models + Keep a moving average of everything in the model state_dict (parameters and buffers). + This is intended to allow functionality like + https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage + A smoothed version of the weights is necessary for some training schemes to perform well. + This class is sensitive where it is initialized in the sequence of model init, + GPU assignment and distributed training wrappers. + """ + + def __init__(self, model, decay=0.9999, updates=0): + # Create EMA + self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA + # if next(model.parameters()).device.type != 'cpu': + # self.ema.half() # FP16 EMA + self.updates = updates # number of EMA updates + self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs) + for p in self.ema.parameters(): + p.requires_grad_(False) + + def update(self, model): + # Update EMA parameters + with torch.no_grad(): + self.updates += 1 + d = self.decay(self.updates) + + msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict + for k, v in self.ema.state_dict().items(): + if v.dtype.is_floating_point: + v *= d + v += (1. - d) * msd[k].detach() + + def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): + # Update EMA attributes + copy_attr(self.ema, model, include, exclude)